研究人员解决了量子信息传输的基础问题:在超小范围内构建通信能力

研究人员解决了量子信息传输的基础问题:在超小范围内构建通信能力 东京大学工业科学研究所的研究人员解决了量子信息传输中的一个基础性问题,这将极大地提高集成电路和量子计算的实用性。资料来源:东京大学工业科学研究所现在,在最近发表于《物理评论快报》上的一项研究中,东京大学工业科学研究所的研究人员正在解决这个问题:他们开发了一种新技术,可以在几十到一百微米的范围内传输量子信息。这一进展可以改善即将问世的量子电子产品的功能。研究人员如何在同一量子计算机芯片上将量子信息从一个量子点传输到另一个量子点?一种方法可能是将电子(物质)信息转换成光(电磁波)信息:通过产生光-物质混合态。之前的工作与量子信息处理的单电子需求不符。改进高速量子信息传输方式,使其在设计上更加灵活,并与现有的半导体制造工具兼容,是研究小组的研究目标。"在我们的工作中,我们将量子点中的几个电子耦合到一个称为太赫兹分环谐振器的电路中,"该研究的第一作者黑山和之解释说。"这种设计非常简单,适合大规模集成。"以往的工作都是基于谐振器与数千到数万个电子集合的耦合。事实上,耦合强度是基于这个电子群的大尺寸。相比之下,本系统只限制了几个电子,适合量子信息处理。然而,电子和太赫兹电磁波都被限制在一个超小区域内。因此,耦合强度与多电子系统相当。资深作者 Kazuhiko Hirakawa 说:"我们很兴奋,因为我们利用先进纳米技术中普遍存在的结构这些结构通常被集成到半导体制造中来帮助解决一个实际的量子信息传输问题。我们还期待着将我们的发现应用于理解光电子耦合态的基础物理学。"这项工作在解决之前量子信息传输中的一个棘手问题上迈出了重要一步,因为该问题限制了实验室研究成果的应用。此外,这种光物质相互转换被认为是基于半导体量子点的大规模量子计算机的基本架构之一。由于研究人员的成果是基于半导体制造中常见的材料和程序,因此实际应用应该很简单。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法 HZDR 的研究人员成功地在磁盘中产生了类似于波的激发即所谓的磁子来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR / Mauricio Bejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(Science Advances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR 研究员、该刊物第一作者毛里西奥-贝哈拉诺(Mauricio Bejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和 IBM 在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR 小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR 团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员利用电子和空穴自旋实现了精确的量子比特控制和相互作用

研究人员利用电子和空穴自旋实现了精确的量子比特控制和相互作用 巴塞尔大学在量子比特技术方面取得的进展为可扩展量子计算带来了希望,它利用电子和空穴自旋实现了精确的量子比特控制和相互作用。全世界的研究人员都在探索各种量子比特技术,对实用量子计算机的追求正如火如荼地进行着。尽管做出了大量努力,但对于哪种类型的量子比特最能最大限度地发挥量子信息科学的潜力,人们仍未达成共识。量子比特是量子计算机的基础。它们负责处理、传输和存储数据。有效的量子位必须可靠地存储和快速处理信息。这就要求外部系统能够准确控制大量量子比特之间稳定、迅速的相互作用。当今最先进的量子计算机只有几百个量子比特。这就限制了它们执行传统计算机已经能够完成的计算,而且往往能更高效地完成。要想推动量子计算的发展,研究人员必须找到一种在单个芯片上容纳数百万量子比特的方法。电子和空穴为了解决数千个量子比特的排列和连接问题,巴塞尔大学和 NCCR SPIN 的研究人员依靠一种利用电子或空穴自旋(固有角动量)的量子比特。空穴本质上是半导体中缺失的电子。空穴和电子都具有自旋,可采用两种状态之一:向上或向下,类似于经典比特中的 0 和 1。与电子自旋相比,空穴自旋的优势在于它可以完全由电子控制,无需在芯片上安装微型磁铁等额外元件。两个相互作用的空穴自旋量子比特。当一个空穴(洋红色/黄色)从一个位点隧穿到另一个位点时,它的自旋(箭头)会因所谓的自旋轨道耦合而旋转,从而导致周围气泡所描述的各向异性相互作用。资料来源:NCCR SPIN2022 年,巴塞尔物理学家证明,现有电子设备中的空穴自旋可以被捕获并用作量子比特。这些"FinFET"(鳍式场效应晶体管)内置于现代智能手机中,并通过广泛的工业流程生产出来。现在,安德烈亚斯-库尔曼(Andreas Kuhlmann)博士领导的团队首次成功地在这种装置中实现了两个量子比特之间可控的相互作用。量子计算机需要"量子门"来执行计算。量子门"代表着操纵量子比特并将它们相互耦合的操作。研究人员在《自然-物理》杂志上报告说,他们能够将两个量子比特耦合起来,并根据其中一个量子比特的自旋状态,使另一个量子比特的自旋发生受控翻转这就是所谓的受控自旋翻转。"孔自旋使我们能够创建既快速又高保真的双量子比特门。"库尔曼说:"现在,这一原理还使我们有可能将更多的量子位对耦合在一起。"两个自旋量子比特的耦合基于它们之间的交换相互作用,这种相互作用发生在两个静电相互作用的无差别粒子之间。令人惊奇的是,空穴的交换能不仅在电学上是可控的,而且具有很强的各向异性。这是自旋轨道耦合的结果,意味着空穴的自旋状态受其空间运动的影响。为了在模型中描述这一观察结果,巴塞尔大学和 NCCR SPIN 的实验物理学家和理论物理学家联手合作。库尔曼说:"各向异性使得双量子比特门成为可能,而无需在速度和保真度之间进行通常的权衡。基于空穴自旋的量子比特不仅可以利用硅芯片久经考验的制造工艺,还具有高度的可扩展性,并在实验中被证明是快速和稳健的。这项研究强调,这种方法在开发大规模量子计算机的竞赛中大有可为。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性 纠缠光子是一种即使相隔很远也能保持连接的光粒子,2022 年诺贝尔物理学奖对这方面的实验给予了肯定。IQC研究团队将纠缠与量子点(一种获得2023年诺贝尔化学奖的技术)相结合,旨在优化创建纠缠光子的过程,纠缠光子具有广泛的应用,包括安全通信。提高量子效率和纠缠度IQC和滑铁卢电气与计算机工程系教授Michael Reimer博士说:"量子密钥分发或量子中继器等令人兴奋的应用需要高度纠缠和高效率的结合,这些应用被设想用于将安全量子通信的距离扩展到全球范围或连接远程量子计算机。以前的实验只能测量到近乎完美的纠缠或高效率,但我们是第一个用量子点同时达到这两个要求的人。"纠缠光子源嵌入半导体纳米线的铟基量子点(左),以及如何从纳米线中有效提取纠缠光子的可视化图。资料来源:滑铁卢大学通过将半导体量子点嵌入纳米线,研究人员创造出了一种能产生近乎完美的纠缠光子的光源,其效率是以前工作的65倍。这种新光源是与位于渥太华的加拿大国家研究理事会合作开发的,可以用激光激发,根据指令产生纠缠对。研究人员随后使用荷兰 Single Quantum 公司提供的高分辨率单光子探测器来提高纠缠程度。历史上,量子点系统一直存在一个名为"精细结构分裂"的问题,它会导致纠缠态随时间发生振荡。这意味着使用慢速检测系统进行测量将无法测量纠缠状态,IQC 和滑铁卢电气与计算机工程系博士生 Matteo Pennacchietti 说。"我们将量子点与非常快速和精确的检测系统相结合,克服了这一难题。我们基本上可以在振荡过程中的每一点上获取纠缠态的时间戳,这就是我们拥有完美纠缠的地方。"为了展示未来的通信应用,Reimer 和 Pennacchietti 与 Norbert Lütkenhaus 博士和 Thomas Jennewein 博士(两人均为 IQC 教师和滑铁卢物理与天文学系教授)及其团队合作。利用新的量子点纠缠源,研究人员模拟了一种称为量子密钥分发的安全通信方法,证明量子点源在未来的安全量子通信中大有可为。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员利用量子密钥创造了新的安全信息传输距离纪录:100公里

研究人员利用量子密钥创造了新的安全信息传输距离纪录:100公里 德国电信大学的研究团队通过 100 公里长的光纤电缆,成功地安全分发了量子加密密钥。资料来源:德国技术大学丹麦科技大学(DTU)的科学家通过连续可变量子密钥分发(CV QKD)技术分发量子安全密钥,在安全通信领域取得了突破性进展。该团队创造了一项新纪录,使该技术的有效距离达到了前所未有的 100 公里,这是 CV QKD 技术所能达到的最远距离。这种方法的优势在于它可以应用于现有的互联网基础设施。量子计算机对现有的基于算法的加密技术构成了威胁,目前这种加密技术可以确保数据传输不被窃听和监视。目前,量子计算机还没有强大到足以破解这些加密算法的地步,但这只是时间问题。如果量子计算机成功破解了最安全的算法,那么它就为所有通过互联网连接的数据敞开了大门。这加速了基于量子物理学原理的新加密方法的开发。但要取得成功,研究人员必须克服量子力学的一个难题确保较长距离内的一致性。迄今为止,连续可变量子密钥分发技术在短距离内最有效。"我们实现了一系列改进,尤其是在沿途光子损耗方面。在这次发表在《科学进展》(Science Advances)上的实验中,我们通过光缆将量子加密密钥安全分发了 100 公里。"德国技术大学副教授托比亚斯-盖林(Tobias Gehring)说:"这是使用这种方法的创纪录距离。"他与德国技术大学的一组研究人员的目标是能够通过互联网在全球范围内分发量子加密信息。"来自光量子态的密匙当数据需要从 A 发送到 B 时,必须对其进行保护。加密将数据与发送方和接收方之间分发的安全密钥结合起来,这样双方都能访问数据。在数据传输的过程中,第三方一定不能找出密钥,否则,加密就会被破坏。因此,密钥交换对数据加密至关重要。量子密钥分发(QKD)是研究人员正在研究的一种用于重要交换的先进技术。该技术利用量子力学粒子(称为光子)发出的光来确保加密密钥的交换。研究小组:(前排)Adnan A.E. Hajomer、Nitin Jain、Ulrik L. Andersen(后排)Ivan Derkach、Hou-Man Chin、Tobias Gehring。资料来源:德国技术大学当发送者发送用光子编码的信息时,光子的量子力学特性就会被利用,为发送者和接收者创建一个独一无二的密钥。其他人试图测量或观察量子态光子时,会立即改变光子的状态。因此,物理上只有通过干扰信号才能测量光。"不可能复制量子态,就像复制一张 A4 纸一样如果你尝试复制,那将是一个低劣的副本。这就是无法复制密钥的原因。"托比亚斯-盖林解释说:"这可以保护健康记录和金融部门等关键基础设施免遭黑客攻击。通过现有基础设施工作连续可变量子密钥分发(CV QKD)技术可以集成到现有的互联网基础设施中。使用这项技术的优势在于可以建立一个类似于光通信的系统。互联网的支柱是光通信。它通过光导纤维中的红外线发送数据。光导纤维的作用是在电缆中铺设光导,确保我们能在全球范围内发送数据。通过光纤电缆发送数据的速度更快、距离更远,而且光信号不易受到干扰,技术术语称之为噪音。"这是一项已经使用了很长时间的标准技术。因此,你不需要发明任何新东西就能用它来分发量子密钥,而且它还能大大降低实施成本。而且,我们可以在室温下工作,"托比亚斯-盖林解释说:"但 CV QKD 技术在较短的距离内效果最佳。我们的任务是增加距离。100公里是朝着正确方向迈出的一大步"。研究人员通过解决限制他们的系统在更远距离上交换量子加密密钥的三个因素,成功地增加了距离。机器学习提供了对影响系统的干扰的早期测量。这些干扰被称为"噪音",例如,电磁辐射会扭曲或破坏正在传输的量子态。较早地检测到噪声可以更有效地减少其相应的影响。此外,研究人员还能更好地纠正因噪音、干扰或硬件缺陷而可能出现的错误。"在我们即将开展的工作中,我们将利用这项技术在丹麦各部委之间建立一个安全通信网络,以确保他们的通信安全。我们还将尝试在哥本哈根和欧登塞等地之间生成秘密密钥,使在这两个城市都设有分支机构的公司能够建立量子安全通信,"托比亚斯-盖林说。编译自:ScitechDaily ... PC版: 手机版:

封面图片

ETH研究人员利用静态电场和磁场成功捕获离子 并用其进行量子运算

ETH研究人员利用静态电场和磁场成功捕获离子 并用其进行量子运算 在离子阱中使用振荡电磁场限制了量子计算机目前可实现的量子比特数量。现在,苏黎世联邦理工大学的研究人员在一个微加工芯片上制造出了一个离子阱,只使用静态场电场和磁场就能在其中进行量子运算。在这种阱中,离子可以向任意方向传输,一个芯片上可以安装多个这样的阱。ETH 研究人员的实验装置。阱芯片位于银色穹顶下方的容器内,其中的透镜可以捕捉到被困离子发出的光。图片来源:苏黎世苏黎世联邦理工大学 / Pavel Hrmo原子中电子的能量状态遵循量子力学定律:它们不是连续分布的,而是被限制在某些定义明确的值中这也被称为量子化。这种量子化状态是量子比特(qubit)的基础,科学家们希望用它来制造极其强大的量子计算机。为此,原子必须冷却并被困在一个地方。强捕获可以通过电离原子来实现,也就是给原子带上电荷。然而,电磁学的一个基本定律指出,时间恒定的电场无法捕获单个带电粒子。另一方面,通过加入一个振荡电磁场,就可以得到一个稳定的离子阱,也称为保罗阱。通过这种方法,近年来已经可以用离子阱制造出包含约 30 个量子比特的量子计算机。然而,这种技术无法直接实现更大的量子计算机。振荡场使得很难在单个芯片上组合多个这样的阱,而且使用振荡场会使阱发热系统越大,问题越严重。同时,离子的传输仅限于沿着交叉连接的线性部分通过。在二维平面上移动单个受困离子并用激光束照射,研究人员就能制作出 ETH 的标志。图像是通过多次重复传输序列的平均值形成的。资料来源:苏黎世苏黎世联邦理工大学/量子电子研究所带磁场的离子阱由乔纳森-霍姆(Jonathan Home)领导的苏黎世苏黎世联邦理工大学研究小组现已证明,适合量子计算机使用的离子阱也可以使用静态磁场而不是振荡磁场来构建。在这些带有额外磁场的静态阱(称为潘宁阱)中,未来超级计算机的任意传输和必要操作都得以实现。研究人员最近在科学杂志《自然》上发表了他们的研究成果。博士生 Shreyans Jain 说:"传统上,当人们想要俘获非常多的离子进行精密实验时,就会使用潘宁陷阱,但无需对它们进行单独控制,相比之下,在基于离子的小型量子计算机中,则使用保罗陷阱。"苏黎世联邦理工大学的研究人员提出的利用潘宁陷阱制造未来量子计算机的想法最初遭到了同事们的质疑。原因有很多:潘宁陷阱需要极强的磁铁,而磁铁非常昂贵且体积庞大。此外,以前实现的潘宁陷阱都非常对称,而 ETH 使用的芯片级结构却违反了这一点。将实验置于大型磁铁中,很难引导控制量子比特所需的激光束进入陷阱,而强磁场会增加量子比特能态之间的间距。这反过来又使控制激光系统变得更加复杂:不再需要一个简单的二极管激光器,而是需要几个锁相激光器。使用过的潘宁阱中间部分示意图。通过不同电极(黄色)产生的电场和磁场的组合,离子(红色)被俘获。资料来源:苏黎世苏黎世联邦理工大学/量子电子学研究所任意方向的传输然而,霍姆和他的合作者们并没有被这些困难吓倒,他们在布伦瑞克物理技术苏黎世联邦理工大学(Physikalisch-Technische Bundesanstalt in Braunschweig)制造的超导磁体和带有多个电极的微加工芯片的基础上,建造了一个潘宁陷阱。使用的磁铁能提供 3 特斯拉的磁场,比地球磁场强近 10 万倍。苏黎世的研究人员利用低温冷却镜系统,成功地将必要的激光穿过磁铁照射到离子上。它们的努力终于有了回报:一个被捕获的离子可以在捕获器中停留数天,现在可以在芯片上任意移动,通过控制不同的电极"如飞"连接各点这是以前基于振荡场的旧方法无法实现的。由于诱捕不需要振荡场,因此可以在一块芯片上安装许多诱捕器。作为博士生参与实验的托比亚斯-赛格瑟(Tobias Sägesser)说:"一旦充好电,我们甚至可以将电极与外界完全隔离,从而研究离子受外界影响的干扰程度。"质子的相干控制研究人员还证明,在保持量子力学叠加的同时,还可以控制被困离子的量子比特能态。相干控制既适用于离子的电子(内部)状态和(外部)量子化振荡状态,也适用于内部和外部量子态的耦合。后者是产生纠缠态的先决条件,而纠缠态对量子计算机非常重要。下一步,霍姆希望在同一芯片上的相邻潘宁陷阱中俘获两个离子,从而证明也可以进行多个量子比特的量子操作。这将是利用潘宁陷阱中的离子实现量子计算机的最终证明。教授还考虑了其他应用。例如,由于新陷阱中的离子可以灵活移动,它们可以用来探测表面附近的电场、磁场或微波场。这就为利用这些系统作为表面特性的原子传感器提供了可能性。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员从原子层面了解二维半导体界面上的电荷转移过程

研究人员从原子层面了解二维半导体界面上的电荷转移过程 超短闪光打破了电子(红色)和空穴(蓝色)之间的结合,从而实现了对原子薄半导体中电荷转移过程的研究。资料来源:Lukas Kroll、Jan Philipp Bange、Marcel Reutzel、Stefan Mathias:《科学进展》,DOI: 10.1126/sciadv.adi1323通过使用一种特殊的方法破坏电子和空穴之间的结合,他们得以从微观上深入了解半导体界面上的电荷转移过程。相关成果发表在《科学进展》(Science Advances)上。当光线照射到半导体上时,其能量会被吸收。因此,带负电荷的电子和带正电荷的空穴在半导体中结合成对,形成激子。在最先进的二维半导体中,这些激子具有极高的结合能。在他们的研究中,研究人员为自己设定了一个挑战:研究激子的空穴。哥廷根大学的物理学家兼第一作者 Jan Philipp Bange 解释说:"在我们的实验室,我们使用光发射光谱来研究量子材料对光的吸收如何导致电荷转移过程。迄今为止,我们一直专注于电子-空穴对中的电子,我们可以使用电子分析仪测量这些电子。到目前为止,我们还没有任何方法可以直接获取空穴本身。因此,我们对如何不仅描述激子的电子,还能描述其空穴的特性这一问题很感兴趣"。为了回答这个问题,哥廷根大学物理系的马塞尔-罗伊策尔博士和斯特凡-马蒂亚斯教授领导的研究人员使用了一种特殊的光电子显微镜和高强度激光。在这一过程中,激子的破裂会导致实验中测得的电子能量损失。罗伊策尔解释说:"这种能量损失是不同激子的特征,取决于电子和空穴相互作用的环境。"在目前的研究中,研究人员使用了一种由两种不同原子厚度的半导体组成的结构,证明激子的空穴从一个半导体层转移到另一个半导体层,类似于太阳能电池。马尔堡大学的埃尔明-马利克教授团队能够通过一个模型来解释这一电荷转移过程,描述微观层面上发生的情况。马蒂亚斯总结道:"未来,我们希望利用电子和空穴相互作用的光谱特征来研究量子材料中超短时间和超长尺度的新阶段。这些研究可以成为开发新技术的基础,我们希望将来能为此做出贡献。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人