东京大学研究人员的新算法让iPhone变成全息投影仪

东京大学研究人员的新算法让iPhone变成全息投影仪 东京大学的一个研究小组介绍了一种利用智能手机生成全息图像的实用、经济高效的方法,旨在简化和增强虚拟现实和增强现实的 3D 显示效果,同时避免激光系统的缺点。无论增强现实和虚拟现实显示器是用于游戏、教育还是其他应用,结合 3D 显示器都能创造出更加逼真和互动的用户体验。来自日本东京大学的研究小组组长 Ryoichi Horisaki 说:"尽管全息技术可以创建出非常逼真的物体 3D 呈现,但传统方法并不实用,因为它们依赖于激光源。激光发出的相干光易于控制,但却使系统变得复杂、昂贵,而且有可能对眼睛造成伤害。"在 Optica 出版集团的《光学快报》(Optics Letters)杂志上,研究人员介绍了他们基于计算机生成全息技术(CGH)的新方法。得益于他们开发的一种新算法,他们只需使用一部 iPhone 和一种名为空间光调制器的光学元件,就能再现由两个全息层组成的三维彩色图像。研究人员开发出一种三维全彩显示方法,利用智能手机屏幕而不是激光来创建全息图像。图为他们的实验结果,其中可以观察到从第一层到第二层的连续过渡。图片来源:东京大学 Ryoichi Horisaki"我们相信,在未来的视觉界面和 3D 显示应用中,这种方法最终将有助于最大限度地减少光学元件、降低成本和减少对眼睛的潜在伤害,"论文第一作者 Otoya Shigematsu 说。"更具体地说,它有可能提高近眼显示器的性能,比如高端VR头显中使用的近眼显示器。"更实用的方法虽然 CGH 使用算法生成图像,但通常需要激光发出的相干光来显示这些全息图像。在之前的一项研究中,研究人员发现,白色芯片板发光二极管发出的时空非相干光可用于 CGH。然而,这种装置需要两个空间光调制器控制光波面的设备由于价格昂贵而不切实际。在这项新研究中,研究人员开发出了一种成本更低、更实用的非相干 CGH 方法。Horisaki 说:"这项工作与我们实验室对计算成像的关注不谋而合,计算成像是一个致力于通过将光学与信息科学相结合来创新光学成像系统的研究领域。我们致力于最大限度地减少光学元件,消除传统光学系统中不切实际的要求。"图为第一作者重松大弥在实验室中使用的光学实验装置。资料来源:Ryoichi Horisaki,东京大学新方法通过空间光调制器传递来自屏幕的光线,从而呈现多层次的全彩三维图像。虽然这看似简单,但却需要对屏幕的非相干光传播过程进行仔细建模,然后利用这些信息开发出一种新算法,将来自设备屏幕的光线与单个空间光调制器协调起来。重松说:"使用低相干光的全息显示器可以实现逼真的三维显示,同时有可能降低成本和复杂性。尽管包括我们在内的几个小组已经展示了使用低相干光的全息显示器,但我们通过使用智能手机显示器将这一概念发挥到了极致。"为了演示这种新方法,研究人员在 iPhone 14 Pro 的屏幕上显示了一层全息图像,并在空间光调制器上显示了第二层全息图像,从而制作出了双层光学再现全彩 3D 图像。生成的图像每边的尺寸为几毫米。研究人员目前正在努力改进这项技术,使其能够显示更大、层次更多的 3D 图像。更多层次可以提高空间分辨率,使物体在不同深度或距离观看者更远的地方出现,从而使图像看起来更逼真。 ... PC版: 手机版:

相关推荐

封面图片

研究人员找到将VR头盔缩小到普通眼镜大小的方法

研究人员找到将VR头盔缩小到普通眼镜大小的方法 来自斯坦福大学和Nvidia的研究人员已经合作,帮助开发了看起来更像普通眼镜的VR眼镜。好吧,由于从两只眼睛延伸出来的丝带,它们看起来相当愚蠢,但它们比今天常见的类似护目镜的虚拟现实头盔要平坦和紧凑得多。 "然而,广泛采用VR技术的一个主要障碍是现有VR显示器的笨重外形以及与此相关的不适感,"发表在Siggraph 2022上的研究论文说。 这些恰如其分的 "全息眼镜 "可以使用厚度仅为2.5毫米的光学器件提供全色的3D全息图像。与传统的VR头盔的工作方式相比,即一个镜头将一个较小的显示屏放大到离它一定的距离,将所有先决条件的部件缩小到这么小的尺寸是VR的一个相当了不起的进步。

封面图片

东京大学研究人员实现"巨磁阻开关效应" 施加一个磁场改变高达250倍电阻

东京大学研究人员实现"巨磁阻开关效应" 施加一个磁场改变高达250倍电阻 根据日本东京大学公报,该校研究人员领衔的团队研制出一种通道长20纳米的锗半导体纳米通道器件,它属于半导体两端器件,拥有铁和氧化镁双层结构的电极,还添加了硼元素。研究人员观察到,通过给这种器件施加磁场能使其表现出电阻开关效应,外加磁场还使其实现了高达250倍的电阻变化率。研究人员给这种现象取名为“巨磁阻开关效应”。不过,目前仅能在20开尔文(约零下253摄氏度)的低温环境下观测到这种“巨磁阻开关效应”。研究团队下一步将致力于提高“巨磁阻开关效应”出现的温度,以便将其用于开发新型电子元器件等。基于电阻开关效应的电阻式随机存取存储器被视为最有竞争力的下一代非易失性存储器之一。传统的动态随机存取存储器是利用电容储存电荷多少来存储数据,其一大缺点是数据的易失性,电源意外切断时会丢失存储数据。而电阻式随机存取存储器是通过向器件施加脉冲电压产生电阻高低变化,以此表示二进制中的“0”和“1”,其存储数据不会因意外断电而丢失,是一种处于开发阶段的下一代内存技术。论文第一作者、东京大学研究生院工学系研究科教授大矢忍指出,新成果将来有望在电子领域得到应用,特别是用于神经形态计算以及开发下一代存储器、超高灵敏度传感器等新型器件。 ... PC版: 手机版:

封面图片

ℹ日本北海道大学研究人员发明一款支架「OMEME」,让你的头戴显示器变成陪伴机器人陪你工作#

ℹ日本北海道大学研究人员发明一款支架「OMEME」,让你的头戴显示器变成陪伴机器人陪你工作# 日本北海道大学的研究人员发表了一款头戴式显示器支架「OMEME」,可以让你的头戴式显示器在没有使用时变成陪伴机器人配在你身边。研究人员用 ...

封面图片

水晶光电实现体全息波导片量产落地 图像质量远超同行

水晶光电实现体全息波导片量产落地 图像质量远超同行 水晶光电,作为光学元件制造领域的佼佼者,始终专注于光学镀膜、AR光学和半导体光学等领域的研发与创新。此次与DigiLens的携手,不仅为双方的合作打下了坚实的基础,更为AR开发人员提供了高质量的Crystal波导制造方案,助力其打造低成本、高性能的AR设备,如智能眼镜和抬头显示器。水晶光电副总经理刘风雷在接受采访时表示:“自2011年起,水晶光电便深耕XR业务。在对比了多种波导解决方案后,我们选择了DigiLens的技术。这是因为DigiLens的技术不仅产量高,而且具有行业内无可比拟的价格优势和卓越的图像质量。”自2020年起,水晶光电与DigiLens便展开了紧密的合作,共同研发并推出了市场上最为先进且成本效益高的波导技术。此次技术升级与量产的落地,不仅标志着双方合作取得了显著的成果,更为整个AR行业带来了新的发展机遇。 ... PC版: 手机版:

封面图片

大阪大学研究人员开发出柔韧可弯曲的光学传感器 揉成一团也能用

大阪大学研究人员开发出柔韧可弯曲的光学传感器 揉成一团也能用 在最近发表于《先进材料》(Advanced Materials)上的一项研究中,大阪大学科学与工业研究所(SANKEN)的研究人员在一种超薄柔性薄片上开发出了一种光学传感器,这种传感器可以弯曲而不会断裂。事实上,这种传感器非常灵活,即使被揉成一团也能正常工作。在照相机中,光学传感器是感应穿过镜头的光线的装置,类似于人眼的视网膜。传感器设计的创新"传统的光学传感器是使用无机半导体和铁电材料制造的,"该研究的主要作者 Rei Kawabata 说。"这使得传感器变得僵硬,无法弯曲。为了避免这个问题,我们研究了另一种探测光的方法。"与传统的光传感器不同,研究人员使用的是印在超薄聚合物基底(小于 5 微米)上的微小碳纳米管光电探测器阵列。当暴露在光线下时,碳纳米管会发热,形成热梯度,然后产生电压信号。在印刷过程中掺入化学载体可进一步提高纳米管的灵敏度。利用这些纳米管,可以测量可见光以及与热或分子有关的红外光。用于宽带红外热分析的集成有机电路的超灵活无线成像仪利用片状光学传感器对光、热和分子进行探测和成像。无线技术集成除了碳纳米管传感器,聚合物基板上还印有有机晶体管,将电压信号组织成图像信号。要读取这种信号,计算机不需要通过电线与传感器进行物理连接。取而代之的是一个无线蓝牙模块。该研究的资深作者荒木祯平说:"有了这套无线系统,我们的成像仪就能附着在柔软和弯曲的物体上,对其表面或内部进行分析,而不会损坏它们。"集成了碳纳米管光电探测器和有机晶体管的片式光学传感器研究人员制作了薄片型光学传感器的原型,并测试了其感应人体手指或电线等物体的热量以及流经管道的葡萄糖的能力。他们发现,这种光学传感器在很宽的波长范围内都具有很高的灵敏度。此外,在室温和大气条件下,测试表明它具有很高的弯曲耐久性,即使被揉皱也能正常工作。这种无线测量系统和薄片型光学传感器的独特优势将为执行许多任务(如无需采样即可评估液体质量)带来更简单的新方法。研究人员认为,它在无损成像、可穿戴设备和软机器人等许多应用领域都大有可为。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中山大学开发超薄纳米压印超透镜阵列的AR集成成像显示器

中山大学开发超薄纳米压印超透镜阵列的AR集成成像显示器 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 集成成像技术是一种利用微透镜/针孔阵列记录和再现光场的光场3D技术,其分为记录过程和显示过程。所述技术的记录过程类似于苍蝇的眼睛机制,通过一大的微透镜阵列获得原始3D物体在不同视角下的元素图像阵列,该元素图像阵列包含了原始3D物体的全光场信息,类似于全息术。但与全息术不同,这种解决方案不局限于相干光源。通过显示器显示元图像,利用微透镜阵列可以将原始3D物体真实地重构出来。集成成像显示具有全视差和准连续视点等特性,可提供一种能够具有深度线索和避免视觉疲劳的真3D显示。然而,由于技术限制,集成成像显示在21世纪之前进展缓慢,但随着算法的增强、制造能力的提高和微显示屏的发展,行业开始迅速发展,尤其是在过去十年中。对于下一代3D的显示技术,平面超构光学元件十分富有前景,超薄的超透镜是传统大体积透镜的理想替代品。超透镜在亚波长尺度上表现出前所未有的操纵光的能力,能对透射或反射光的振幅、相位、偏振和色散进行精确调控。近年来,超透镜在集成成像显示方面显示出巨大的潜力,解决了传统微透镜阵列遇到的宽带消色差的问题。然而,制造大尺寸超透镜阵列及其与用于集成成像显示器的商用微型显示器的集成依然是一项具有挑战性的任务。另外,用于编码3D物体和创建元素图像阵列的计算算法依然太慢,无法实现用于实际视频级集成成像显示器的3D物体的实时渲染。所以在一项研究中,中山大学团队介绍了一种用于近眼3D集成成像显示器的大尺寸纳米压印超透镜阵列。系统结合了大尺寸超透镜阵列、商用微型显示器和实时渲染算法,能够产生具有运动视差和深度线索的高质量3D图像。研究人员采用纳米压印制造技术和折射率为1.9的压印胶制造了一个大尺寸(1.84 mm乘1.84 mm)超透镜阵列,并通过3D打印支架将4乘4的高质量超透镜阵列与商用微型显示器集成。为了实现视频级集成成像显示,他们同时引入了一种利用了集成成像显示中体元素和像素之间静态映射的全新快速渲染方法。其中,这种渲染方法可以绕过传统的几何投影,通过查找表实现实时显示的性能。当然,团队指出,尽管用于高质量超透镜制造和实时渲染算法的纳米压印光刻可以推动未来VR和AR应用的集成成像显示器的发展,但这一领域依然在一定的挑战。例如,高分辨率元素图像阵列显示是一个巨大的障碍,需要超小像素尺寸到亚微米级的微显示器。然而,制造这种超高像素密度微显示器目前仍面临着相当大的挑战。在这种情况下,具有高刷新率的时间复用光场显示技术有望提供可行的解决方案。其次,可用的纳米压印胶水的折射率依然很低,需要高深径比的纳米柱来构建超透镜阵列,从而对微纳制作技术的精度提出非常高的要求和挑战。第三,真正交互式近眼3D显示器的开发需要结合3D交互技术以实现快速可调谐性和低功耗。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人