斯坦福科学家开发出革命性的AR头戴设备 全息技术让普通眼镜展示3D仙境

斯坦福科学家开发出革命性的AR头戴设备 全息技术让普通眼镜展示3D仙境 通过全息技术和人工智能,这些眼镜可以在直接观看真实世界的基础上显示全彩 3D 移动图像。图片来源:安德鲁-布罗德海德电子工程系副教授、快速崛起的空间计算领域专家戈登-韦茨坦(Gordon Wetzstein)说:"我们的头显在外界看来就像一副日常佩戴的眼镜,但佩戴者透过镜片看到的是一个丰富的世界,上面叠加着生动的全彩三维计算图像。"韦茨坦和一个工程师团队在《自然》杂志上发表的一篇新论文中介绍了他们的设备。他们说,虽然这种技术现在只是一个原型,但它可以改变从游戏和娱乐到培训和教育等领域在任何地方,计算机图像都可以增强或告知佩戴者对周围世界的了解。韦茨坦领导的斯坦福计算成像实验室的博士生、该论文的共同第一作者马努-戈帕库马尔(Manu Gopakumar)说:"我们可以想象,外科医生戴着这样的眼镜来规划精细或复杂的手术,或者飞机机械师戴着这样的眼镜来学习如何操作最新的喷气发动机。"这种新方法首次将复杂的工程要求串联起来,迄今为止,这些要求要么导致头戴式头显不美观,要么导致 3D 视觉体验不令人满意,佩戴者会感到视觉疲劳,有时甚至有点恶心。斯坦福大学计算成像实验室博士后研究员、论文共同第一作者 Gun-Yeal Lee 说:"目前还没有其他增强现实系统能与我们的三维图像质量相媲美。"为了取得成功,研究人员结合人工智能增强全息成像和新型纳米光子设备方法,克服了各种技术障碍。第一个障碍是,显示增强现实图像的技术通常需要使用复杂的光学系统。在这些系统中,用户实际上无法通过头显镜头看到真实世界。相反,安装在头显外部的摄像头会实时捕捉世界,并将图像与计算图像相结合。然后将生成的混合图像立体投射到用户眼中。"用户看到的是现实世界的数字化近似图,上面叠加了计算图像。这是一种增强虚拟现实,而不是真正的增强现实。"Wetzstein 解释说,这些系统必然非常笨重,因为它们在佩戴者的眼睛和投影屏幕之间使用放大镜片,要求眼睛、镜片和屏幕之间的距离最小,从而增加了体积。斯坦福计算成像实验室的博士生、论文的共同作者 Suyeon Choi 说:"除了笨重之外,这些局限性还可能导致感知真实度不尽人意,通常还会造成视觉不适。"为了制作出在视觉上更令人满意的三维图像,韦茨坦摒弃了传统的立体方法,转而采用全息技术,这是一种在 20 世纪 40 年代末获得诺贝尔奖的视觉技术。尽管全息技术在三维成像方面大有可为,但由于无法描绘准确的三维深度线索,全息技术的广泛应用一直受到限制,导致视觉体验不佳,有时甚至令人有类似晕车的反应。Wetzstein 团队利用人工智能改进了全息图像中的深度提示。然后,利用纳米光子学和波导显示技术的进步,研究人员能够将计算出的全息图像投射到眼镜镜片上,而无需依赖笨重的附加光学器件。通过在透镜表面蚀刻纳米级的图案来构建波导。安装在每个太阳穴上的小型全息显示屏通过蚀刻图案投射计算图像,这些图案会在镜片内反弹光线,然后将光线直接传送到观看者的眼睛。透过眼镜片,用户既能看到真实世界,又能看到上面显示的全彩 3D 计算图像。3D 效果之所以得到增强,是因为它是通过立体和全息两种方式产生的,前者是指每只眼睛都能看到略有不同的图像,就像传统的 3D 成像一样;后者则是指每只眼睛都能看到略有不同的图像,就像传统的 3D 成像一样。斯坦福大学计算成像实验室的博士生布莱恩-赵(Brian Chao)是这篇论文的共同作者,他说:"利用全息技术,你还可以在每只眼睛前获得完整的三维体积,从而提高栩栩如生的三维图像质量。"新的波导显示技术和全息成像技术的最终成果是提供逼真的三维视觉体验,既能满足用户的视觉需求,又不会让用户感到疲劳,而这种疲劳感正是早期方法所面临的挑战。Wetzstein 说:"全息显示一直被认为是终极 3D 技术,但它从未取得过重大的商业突破。也许现在他们有了多年来一直在等待的杀手级应用"。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

斯坦福大学刚刚推出了基于辅助全息成像技术的未来AR眼镜原型

斯坦福大学刚刚推出了基于辅助全息成像技术的未来AR眼镜原型 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 斯坦福大学的全息 AR 眼镜原型。目前,实验室版本的视场角很小,在实验室里只有 11.7 度,远远小于 Magic Leap 2 甚至微软 HoloLens。但是,斯坦福大学的计算成像实验室有一整页的资料,上面有一个又一个的视觉辅助工具,这些辅助工具表明,该实验室可能在研究一些特别的东西:更薄的全息组件堆叠,几乎可以放入标准眼镜框中,经过训练,可以投射出逼真的、全彩的、移动的 3D 图像,这些图像会在不同深度出现。现有 AR 眼镜(a)和原型眼镜(b)与 3D 打印原型眼镜(c)的光学效果对比。图片:斯坦福计算成像实验室与其他 AR 眼镜一样,这些眼镜也使用波导,波导是引导光线穿过眼镜进入佩戴者眼睛的部件。但研究人员说,他们已经开发出一种独特的"纳米光子元表面波导",可以"消除对笨重的准直光学器件的需求",并开发出一种"学习型物理波导模型",利用人工智能算法大幅提高图像质量。该研究称,这些模型"利用相机反馈自动校准"。无论是真实物体还是增强物体,都可以有不同的深度。尽管斯坦福大学的这项技术目前还只是一个原型,其工作模型似乎是固定在长凳上的,框架也是3D打印的,但研究人员希望能颠覆目前的空间计算市场,这个市场还包括苹果的Vision Pro、Meta的Quest 3等笨重的直通式混合现实头盔。博士后研究员 Gun-Yeal Lee 帮助撰写了这篇发表在《自然》杂志上的论文,他说,目前还没有其他 AR 系统能在性能和紧凑性方面与之相比。像 Meta 这样的公司已经斥资数十亿美元购买和构建 AR 眼镜技术,希望最终能生产出大小和形状与普通眼镜无异的完美产品。目前,Meta 的雷朋眼镜没有板载显示屏,但我们去年获得的泄露的 Meta 硬件路线图显示,Meta 第一款真正的 AR 眼镜的目标日期是 2027 年。 ... PC版: 手机版:

封面图片

东京大学研究人员的新算法让iPhone变成全息投影仪

东京大学研究人员的新算法让iPhone变成全息投影仪 东京大学的一个研究小组介绍了一种利用智能手机生成全息图像的实用、经济高效的方法,旨在简化和增强虚拟现实和增强现实的 3D 显示效果,同时避免激光系统的缺点。无论增强现实和虚拟现实显示器是用于游戏、教育还是其他应用,结合 3D 显示器都能创造出更加逼真和互动的用户体验。来自日本东京大学的研究小组组长 Ryoichi Horisaki 说:"尽管全息技术可以创建出非常逼真的物体 3D 呈现,但传统方法并不实用,因为它们依赖于激光源。激光发出的相干光易于控制,但却使系统变得复杂、昂贵,而且有可能对眼睛造成伤害。"在 Optica 出版集团的《光学快报》(Optics Letters)杂志上,研究人员介绍了他们基于计算机生成全息技术(CGH)的新方法。得益于他们开发的一种新算法,他们只需使用一部 iPhone 和一种名为空间光调制器的光学元件,就能再现由两个全息层组成的三维彩色图像。研究人员开发出一种三维全彩显示方法,利用智能手机屏幕而不是激光来创建全息图像。图为他们的实验结果,其中可以观察到从第一层到第二层的连续过渡。图片来源:东京大学 Ryoichi Horisaki"我们相信,在未来的视觉界面和 3D 显示应用中,这种方法最终将有助于最大限度地减少光学元件、降低成本和减少对眼睛的潜在伤害,"论文第一作者 Otoya Shigematsu 说。"更具体地说,它有可能提高近眼显示器的性能,比如高端VR头显中使用的近眼显示器。"更实用的方法虽然 CGH 使用算法生成图像,但通常需要激光发出的相干光来显示这些全息图像。在之前的一项研究中,研究人员发现,白色芯片板发光二极管发出的时空非相干光可用于 CGH。然而,这种装置需要两个空间光调制器控制光波面的设备由于价格昂贵而不切实际。在这项新研究中,研究人员开发出了一种成本更低、更实用的非相干 CGH 方法。Horisaki 说:"这项工作与我们实验室对计算成像的关注不谋而合,计算成像是一个致力于通过将光学与信息科学相结合来创新光学成像系统的研究领域。我们致力于最大限度地减少光学元件,消除传统光学系统中不切实际的要求。"图为第一作者重松大弥在实验室中使用的光学实验装置。资料来源:Ryoichi Horisaki,东京大学新方法通过空间光调制器传递来自屏幕的光线,从而呈现多层次的全彩三维图像。虽然这看似简单,但却需要对屏幕的非相干光传播过程进行仔细建模,然后利用这些信息开发出一种新算法,将来自设备屏幕的光线与单个空间光调制器协调起来。重松说:"使用低相干光的全息显示器可以实现逼真的三维显示,同时有可能降低成本和复杂性。尽管包括我们在内的几个小组已经展示了使用低相干光的全息显示器,但我们通过使用智能手机显示器将这一概念发挥到了极致。"为了演示这种新方法,研究人员在 iPhone 14 Pro 的屏幕上显示了一层全息图像,并在空间光调制器上显示了第二层全息图像,从而制作出了双层光学再现全彩 3D 图像。生成的图像每边的尺寸为几毫米。研究人员目前正在努力改进这项技术,使其能够显示更大、层次更多的 3D 图像。更多层次可以提高空间分辨率,使物体在不同深度或距离观看者更远的地方出现,从而使图像看起来更逼真。 ... PC版: 手机版:

封面图片

斯坦福的一个研究团队正在开发一种新的 AI 辅助全息成像技术,该技术据称比其研究人员见过的任何技术都要薄、轻和高质量。它能将增强

斯坦福的一个研究团队正在开发一种新的 AI 辅助全息成像技术,该技术据称比其研究人员见过的任何技术都要薄、轻和高质量。它能将增强现实(AR)头戴设备带入一个新的水平吗? 目前,实验室版本的视野很窄,只有11.7度,比Magic Leap 2甚至微软HoloLens都小得多。 但斯坦福大学的计算成像实验室(Computational Imaging Lab)有一整页都是视觉辅助工具,这些工具表明它可能正在研究一些特别的东西:一套更薄的全息组件,几乎可以安装在标准眼镜框架中,并经过训练,可以投射出在不同深度出现的逼真的、全彩的、移动的3D图像。 像其他AR眼镜一样,它们使用波导,这是一种引导光线穿过眼镜进入佩戴者眼睛的组件。但研究人员表示,他们已经开发出一种独特的“纳米光子超表面波导”,可以“消除对笨重的准直光学器件的需求”,以及一种“学习物理波导模型”,该模型使用人工智能算法大幅提高图像质量。研究指出,这些模型“通过相机反馈自动校准”。 尽管斯坦福大学的这项技术目前还只是一个原型,其工作模型似乎是连接在一个长凳上和3d打印的框架上,但研究人员正在寻求颠覆当前的空间计算市场,该市场还包括笨重的透式混合现实耳机,如苹果的Vision Pro、Meta的Quest 3等。 参与撰写这篇发表在《自然》杂志上的论文的博士后研究员Gun-Yeal Lee说,在能力和紧凑性方面,没有其他增强现实系统可以与之相提并论。 标签: #AR眼镜 #斯坦福 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

革命性的元光学设备和尖端计算成像算法改变了热成像技术的运用

革命性的元光学设备和尖端计算成像算法改变了热成像技术的运用 "我们的方法克服了传统光谱热成像仪的难题,传统热成像仪由于依赖于大型滤光轮或干涉仪,通常都比较笨重和精密,"研究团队负责人、来自普渡大学的祖宾-雅各布(Zubin Jacob)说。"我们将元光学设备和尖端计算成像算法结合起来,创造出一种既紧凑又坚固,同时还具有大视场的系统。"在光学出版集团的高影响力研究期刊《光学》(Optica)上,作者介绍了他们的新型光谱偏振分解系统,该系统利用一叠旋转元表面将热光分解为光谱和偏振成分。这样,除了传统热成像技术获取的强度信息外,成像系统还能捕捉热辐射的光谱和偏振细节。研究人员的研究表明,新系统可与商用热像仪配合使用,成功地对各种材料进行分类,而这对于传统热像仪来说通常是一项具有挑战性的任务。这种方法能够根据光谱偏振特征区分温度变化和识别材料,有助于提高包括自动导航在内的各种应用的安全性和效率。旋转元表面堆栈可将热光分解为光谱和偏振成分。研究人员将元表面堆栈与传统的长波红外摄像机和计算成像算法相结合,创建了一个紧凑而强大的光谱热成像系统。本文第一作者、普渡大学博士后研究员王学吉说:"传统的自主导航方法主要依赖于 RGB 摄像机,而这种摄像机在光线不足或天气恶劣等恶劣条件下难以发挥作用。与热辅助探测和测距技术相结合,我们的光谱偏振热像仪可以在这些困难的情况下提供重要信息,比 RGB 或传统热像仪提供更清晰的图像。一旦我们实现了实时视频捕捉,该技术就能大大提高场景感知能力和整体安全性。"用更小的相机做更多的事情长波红外光谱偏振成像对于夜视、机器视觉、痕量气体传感和热成像等应用至关重要。然而,当今的光谱极坐标长波红外成像仪体积庞大,光谱分辨率和视场有限。为了克服这些限制,研究人员转向大面积元表面能以复杂方式操纵光线的超薄结构表面。在设计出具有定制红外响应的旋转色散元表面后,他们开发出了一种制造工艺,可以利用这些元表面制造出适合成像应用的大面积(直径 2.5 厘米)旋转设备。由此产生的旋转堆栈尺寸小于 10 x 10 x 10 厘米,可与传统红外摄像机配合使用。"将这些大面积元光学设备与计算成像算法相结合,有助于高效地重建热辐射光谱。这使得光谱极坐标热成像系统比以前的系统更加紧凑、坚固和有效"。利用热成像技术对材料进行分类为了评估他们的新系统,研究人员使用各种材料和微结构拼出了"普渡大学"字样,每种材料和微结构都具有独特的光谱极坐标特性。利用该系统获取的光谱极坐标信息,他们准确地区分了不同的材料和物体。他们还证明,与传统热成像方法相比,该系统的材料分类准确性提高了三倍,凸显了该系统的有效性和多功能性。研究人员说,这种新方法对于需要详细热成像的应用尤其有用。"例如,在安全领域,它可以通过检测隐藏在人身上的物品或物质来彻底改变机场系统,王学吉说。"此外,其紧凑坚固的设计增强了其在不同环境条件下的适用性,使其特别有利于自主导航等应用"。除了利用该系统实现视频捕捉之外,研究人员还在努力提高该技术的光谱分辨率、传输效率以及图像捕捉和处理速度。他们还计划改进元表面设计,以实现更复杂的光操作,从而获得更高的光谱分辨率。此外,他们还希望将该方法扩展到室温成像,因为元表面堆栈的使用限制了该方法对高温物体的应用。他们计划利用改进的材料、元表面设计和抗反射涂层等技术来实现这一目标。编译自/ScitechDaily ... PC版: 手机版:

封面图片

科学家利用模糊光三维打印高质量镜片

科学家利用模糊光三维打印高质量镜片 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 研究人员开发了一种名为模糊层析成像的新型 3D 打印方法,可以快速生产出具有商业级光学质量的微透镜。他们使用这种技术打印了一个微型透镜阵列,图中的微型透镜阵列由一组镊子夹持。图片来源:加拿大国家研究理事会丹尼尔-韦伯在光学出版集团(Optica Publishing Group)的高影响力研究期刊《光学》(Optica)上,这些研究人员展示了这种新方法,用它制作了一个毫米大小的平凸透镜,其成像性能与市售玻璃透镜类似。他们还表明,这种方法可以在 30 分钟内生产出可以使用的光学元件。韦伯说:"由于层析 3D 打印机和所使用的材料价格低廉,我们预计这种方法对于经济高效地快速制作光学元件原型非常有价值。此外,层析 3D打印固有的自由形态特性可以让光学设计师用形状复杂的打印光学器件取代多个标准光学器件,从而简化设计。"这项新技术使用定制的投影透镜来模糊用于固化光敏树脂的激光束。这样就产生了光学上光滑的表面,从而可以打印出商业质量的镜片,如左下角所示的镜片。资料来源:加拿大国家研究理事会丹尼尔-韦伯断层体积增材制造是一种相对较新的制造方法,它利用投射光在特定区域固化光敏树脂。它可以在没有任何支撑结构的情况下一次性打印出整个部件。然而,现有的层析成像方法无法直接打印出成像质量的透镜,因为所使用的铅笔状光束会造成条纹,从而导致部件表面出现小棱角。虽然可以使用后处理步骤来创建光滑的表面,但这些方法增加了时间和复杂性,从而失去了与断层打印相关的快速原型制作优势。韦伯博士说:"光学元件的制造成本很高,因为一个正常的透镜需要严格的技术指标,而且制造过程复杂耗时。模糊层析成像技术可用于以低成本的方式进行自由形态设计。随着技术的成熟,它可以更快地制作出新光学设备的原型,这对从商业制造商到车库发明家的任何人都非常有用。"为了测试这种新方法,研究人员首先制作了一个简单的平凸透镜,结果表明它的成像分辨率与具有相同物理尺寸的商用玻璃透镜相当。它还表现出微米级的形状误差、亚纳米级的表面粗糙度和接近玻璃透镜的点展宽函数。他们还利用模糊层析技术制作了一个 3×3 的微透镜阵列,并将其与用传统层析 3D 打印技术打印的阵列进行了比较。他们发现,由于表面粗糙度较大,用传统方法打印的阵列无法对名片成像,但用模糊层析成像技术打印的阵列却可以。此外,研究人员还演示了将球透镜叠印到光纤上,这在以前只能通过一种称为双光子聚合的增材制造技术来实现。目前,他们正致力于通过优化光图案设计方法和将材料参数纳入打印过程来提高组件精度。他们还希望实现打印时间的自动化,使系统足够强大,使其能够用于商业用途。韦伯说:"断层三维打印技术是一个迅速成熟的领域,在许多应用领域都得到了应用。在这里,我们利用这种三维打印方法的内在优势来制造毫米级的光学元件。这样,我们就为光学制造技术增加了一种快速、低成本的替代方法,有可能对未来技术产生影响。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中山大学开发超薄纳米压印超透镜阵列的AR集成成像显示器

中山大学开发超薄纳米压印超透镜阵列的AR集成成像显示器 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 集成成像技术是一种利用微透镜/针孔阵列记录和再现光场的光场3D技术,其分为记录过程和显示过程。所述技术的记录过程类似于苍蝇的眼睛机制,通过一大的微透镜阵列获得原始3D物体在不同视角下的元素图像阵列,该元素图像阵列包含了原始3D物体的全光场信息,类似于全息术。但与全息术不同,这种解决方案不局限于相干光源。通过显示器显示元图像,利用微透镜阵列可以将原始3D物体真实地重构出来。集成成像显示具有全视差和准连续视点等特性,可提供一种能够具有深度线索和避免视觉疲劳的真3D显示。然而,由于技术限制,集成成像显示在21世纪之前进展缓慢,但随着算法的增强、制造能力的提高和微显示屏的发展,行业开始迅速发展,尤其是在过去十年中。对于下一代3D的显示技术,平面超构光学元件十分富有前景,超薄的超透镜是传统大体积透镜的理想替代品。超透镜在亚波长尺度上表现出前所未有的操纵光的能力,能对透射或反射光的振幅、相位、偏振和色散进行精确调控。近年来,超透镜在集成成像显示方面显示出巨大的潜力,解决了传统微透镜阵列遇到的宽带消色差的问题。然而,制造大尺寸超透镜阵列及其与用于集成成像显示器的商用微型显示器的集成依然是一项具有挑战性的任务。另外,用于编码3D物体和创建元素图像阵列的计算算法依然太慢,无法实现用于实际视频级集成成像显示器的3D物体的实时渲染。所以在一项研究中,中山大学团队介绍了一种用于近眼3D集成成像显示器的大尺寸纳米压印超透镜阵列。系统结合了大尺寸超透镜阵列、商用微型显示器和实时渲染算法,能够产生具有运动视差和深度线索的高质量3D图像。研究人员采用纳米压印制造技术和折射率为1.9的压印胶制造了一个大尺寸(1.84 mm乘1.84 mm)超透镜阵列,并通过3D打印支架将4乘4的高质量超透镜阵列与商用微型显示器集成。为了实现视频级集成成像显示,他们同时引入了一种利用了集成成像显示中体元素和像素之间静态映射的全新快速渲染方法。其中,这种渲染方法可以绕过传统的几何投影,通过查找表实现实时显示的性能。当然,团队指出,尽管用于高质量超透镜制造和实时渲染算法的纳米压印光刻可以推动未来VR和AR应用的集成成像显示器的发展,但这一领域依然在一定的挑战。例如,高分辨率元素图像阵列显示是一个巨大的障碍,需要超小像素尺寸到亚微米级的微显示器。然而,制造这种超高像素密度微显示器目前仍面临着相当大的挑战。在这种情况下,具有高刷新率的时间复用光场显示技术有望提供可行的解决方案。其次,可用的纳米压印胶水的折射率依然很低,需要高深径比的纳米柱来构建超透镜阵列,从而对微纳制作技术的精度提出非常高的要求和挑战。第三,真正交互式近眼3D显示器的开发需要结合3D交互技术以实现快速可调谐性和低功耗。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人