研究人员开发出从水波中获取更多"蓝色能量"的简单方法

研究人员开发出从水波中获取更多"蓝色能量"的简单方法 研究人员通过将液固纳米发电机的电极移至水流冲击的管端,从波浪中获取更多能量。来源:改编自《ACS 能源通讯》2024 期,DOI: 10/1021.acsenergylett.4c00072研究人员改进的管状波能收集装置被称为液固三电纳米发电机(TENG)。当水在管内来回滑动时,TENG 将机械能转化为电能。这些设备还不能大规模应用的一个原因是它们的能量输出较低。戴国璋、尹凯、颜俊亮及其同事旨在通过优化能量收集电极的位置,提高液固式 TENG 的能量收集能力。实验和结果研究人员使用 16 英寸透明塑料管制作了两个 TENG。在第一个装置中,他们将铜箔电极放在管子的中心这是传统液固式 TENG 的通常位置。在新设计中,他们在管子的一端插入了一个铜箔电极。然后,研究人员在管中注入四分之一的水,并密封管端。一根导线将电极与外部电路连接起来。将这两个装置放在台式摇杆上,水在管内来回流动,并通过将机械能(水撞击或滑动电极产生的摩擦力)转化为电能而产生电流。研究人员发现,与传统设计相比,优化设计将装置的机械能转化为电流的能力提高了 2.4 倍。在另一项实验中,当水分别进入电极覆盖的管段和流出管段时,经过优化的 TENG 闪烁 35 个 LED 灯。研究人员说,这些演示为更大规模地从海浪中收集蓝色能量奠定了基础,并展示了他们的设备在水下无线信号通信等其他应用方面的潜力。编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

研究人员开发出可快速充电的钠电池:几秒钟即可充满,性能媲美锂电池

研究人员开发出可快速充电的钠电池:几秒钟即可充满,性能媲美锂电池 Jeung Ku Kang 表示,这种可实现快速充电、能量密度达到 247 Wh/kg、功率密度达到 34748 W / kg 的混合钠离子能量存储装置,标志着能量存储系统突破了现有瓶颈,他预计这项技术将在包括电动汽车在内的各种电子设备中得到广泛应用。

封面图片

研究人员成功将废弃鸡脂肪转化为清洁能源

研究人员成功将废弃鸡脂肪转化为清洁能源 研究人员开发出一种将鸡脂肪转化为超级电容器碳基电极的新方法,为传统材料提供了一种环保型替代品。这一创新不仅解决了与现有存储设备相关的成本和环境问题,还提高了能源存储技术的性能和效率。全球正朝着更可持续的绿色能源方向发展,这增加了电力储备和对储能设备的需求。遗憾的是,用于这些设备的某些材料既昂贵又存在环境问题。利用通常被扔掉的东西生产替代储能设备有助于解决这些难题。现在,研究人员在《ACS 应用材料与界面》(ACS Applied Materials & Interfaces )杂志上报告了一种将鸡脂肪转化为碳基电极的方法,这种电极可用于超级电容器,储存能量并为 LED 供电。这种提取的鸡脂肪为超级电容器创造了一种碳基材料。资料来源:Mohan Reddy Pallavolu根据国际能源机构的数据,2023 年,全球可再生能源发电能力将比上一年前所未有地增长近 50%。但是,这些多余的能源必须储存起来,以便日后从其生产中获益。例如,由于屋顶太阳能电池板供应过剩,加利福尼亚州的晴天最近引发了负能源价格。由于石墨烯等碳材料具有高效的电荷传输和天然丰富的资源,最近设计高性能存储设备的努力利用了这些材料,但其制造成本高昂,而且会产生污染和温室气体。为了寻找替代碳源材料,Mohan Reddy Pallavolu、Jae Hak Jung、Sang Woo Joo 及其同事希望开发一种简单、经济有效的方法,将废弃鸡脂肪转化为导电纳米结构,用于超级电容器储能装置。研究人员首先使用燃气火焰喷枪灼烧鸡肉中的脂肪,然后使用火焰灯芯法燃烧融化的油,就像使用油灯一样。然后,他们将油烟收集到悬浮在火焰上方的烧瓶底部。电子显微镜显示,烟尘中含有碳基纳米结构,它们是由同心石墨环组成的均匀球形晶格,就像洋葱的层状结构。研究人员测试了一种通过将碳纳米粒子浸泡在硫脲溶液中来增强其电气特性的方法。在这些非对称超级电容器中,当使用源自鸡肉的碳材料作为电极时,LED 可以点亮。资料来源:Mohan Reddy Pallavolu将鸡脂肪来源的碳纳米粒子组装到非对称超级电容器的负极中,可显示出良好的电容性和耐用性,以及高能量和功率密度。正如所预测的那样,当电极由硫脲处理过的碳纳米颗粒制成时,这些特性得到了进一步改善。研究人员随后演示了新型超级电容器的实时应用充电并连接两个超级电容器,点亮红色、绿色和蓝色 LED 灯。这些成果凸显了利用鸡脂肪等食物垃圾作为碳源,寻找更环保的绿色能源的潜在优势。编译自/scitechdaily ... PC版: 手机版:

封面图片

研究人员开发出分子设计新准则 可防止电子通过原子振动耦合损失能量

研究人员开发出分子设计新准则 可防止电子通过原子振动耦合损失能量 对于这些系统中的电子来说,与这些振动相连意味着它们也在不断运动,以百万分之一亿秒的时间尺度随着原子的旋律起舞。但是,所有这些舞动都会导致能量损失,并限制有机分子在发光二极管(OLED)、红外传感器以及用于研究细胞和标记癌细胞等疾病的荧光生物标记物等应用中的性能。现在,研究人员利用激光光谱技术发现了能够阻止这种分子舞蹈的"新分子设计规则"。他们的研究成果发表在《自然》杂志上,揭示了能够阻止电子与原子振动耦合的关键设计原则,从而有效地关闭了分子的紧张舞蹈,推动分子实现无与伦比的性能。艺术家绘制的有机分子光发射特性受原子量子舞动调节的示意图。图片来源:剑桥大学卡文迪什实验室 Pratyush Ghosh 编辑该研究的第一作者、圣约翰学院博士生普拉蒂什-戈什(Pratyush Ghosh)说:"所有有机分子,如活细胞中或手机屏幕中的有机分子,都是由碳原子通过化学键相互连接而成的。这些化学键就像微小的振动弹簧,电子通常会感受到它们,从而损害分子和设备的性能。然而,我们现在发现,当我们将分子的几何和电子结构限制在某些特殊构型时,某些分子可以避免这些有害影响。"为了证明这些设计原理,科学家们设计了一系列高效的近红外发射(680-800 纳米)分子。在这些分子中,振动造成的能量损失实质上是电子随原子的旋律起舞比以前的有机分子低 100 多倍。这种对设计发光分子的新规则的理解和开发,为未来开辟了一条极其有趣的轨迹,这些基本观察结果可以应用于各行各业。"这些分子如今也有广泛的应用。现在的任务是将我们的发现转化为更好的技术,从增强型显示器到用于生物医学成像和疾病检测的改良分子,"领导这项研究的卡文迪什实验室的 Akshay Rao 教授总结道。编译来源:ScitechDailyOI: 10.1038/s41586-024-07246-x ... PC版: 手机版:

封面图片

研究人员发现针对 VPN 应用的高危攻击方法

研究人员发现针对 VPN 应用的高危攻击方法 研究人员设计了一种针对几乎所有虚拟私人网络应用的攻击,迫使应用在加密隧道之外发送和接收部分或全部流量。研究人员将攻击命名为“TunnelVision”。研究人员认为,当连接到这种恶意网络时,所有 VPN 应用都会受到影响,除非用户的 VPN 在 Linux 或安卓上运行,否则无法防止此类攻击。攻击技术可能早在2002年就已存在,而且可能已在野利用。 这种攻击通过操纵为试图连接到本地网络的设备分配 IP 地址的 DHCP 服务器来实现。称为 Option 121 的设置允许 DHCP 服务器覆盖默认的路由规则,将 VPN 流量通过启动加密隧道的本地 IP 地址发送。通过使用 Option 121 将 VPN 流量路由到 DHCP 服务器,攻击将数据转发到 DHCP 服务器本身。安卓是唯一完全使 VPN 应用免受攻击的操作系统,因为它没有实现 Option 121。

封面图片

研究人员开发出可再生骨骼的"骨绷带"

研究人员开发出可再生骨骼的"骨绷带" 压电材料在施加机械应力时会产生电荷。骨骼就是一种压电材料。由于骨具有电微环境,电信号在骨修复过程中发挥着重要作用,可有效促进骨再生。然而,骨再生是一个复杂的过程,依赖于机械、电气和生物成分。目前的骨再生策略,如释放生长因子的移植物或支架,都有其局限性,如供体部位的并发症、有限的可用性和高昂的成本。现在,韩国科学技术院(KAIST)的研究人员开发出了一种开创性的骨再生方法,它将压电和一种天然存在于骨骼中的矿物质结合在一起。羟基磷灰石(HAp)是骨骼和牙齿中的一种矿物质,在骨骼结构强度和再生中发挥作用。它通常被添加到牙膏中,用于重新矿化牙釉质和强化牙齿。研究发现,HAp 能促进成骨(骨形成),为新骨生长提供支架。它还具有压电特性和粗糙的表面,是制作骨生长支架的理想材料。因此,研究人员制作了一个独立的仿生物支架,将HAp集成到聚合物薄膜聚偏氟乙烯-三氟乙烯(P(VDF-TrFE))的压电框架中。这种独立的支架在施加压力时会产生电信号,这使得这种方法有别于以往将HAp和P(VDF-TrFE)结合在一起的研究,后者仅限于金属假体的涂层。他们说,研究人员的新方法为骨再生提供了一个多功能平台,超越了表面结合应用。对含有和不含HAp的支架进行体外比较后发现,HAp支架上的细胞附着率要高出10%至15%。细胞培养五天后,HAp 支架上的细胞增殖率提高了 20% 至 30%,成骨水平提高了约 30% 至 40%。研究结果表明,HAp 最大限度地提高了支架的压电特性,并创造了一种类似于人体细胞外基质的环境,细胞外基质是所有组织的非细胞成分,它提供了组织再生所需的基本物理结构和重要线索。(d)显微 CT 图像显示使用不同支架的小鼠头骨的骨再生情况;(e)支架植入后 2、4 和 6 周的骨量和面积 Joo 等人研究人员随后在小鼠身上测试了他们的 HAp/P(VDF-TrFE)支架,将其置于动物头骨(小腿骨)的缺损处。支架维持了六周,没有发生变形。所有小鼠都存活了下来;没有观察到任何不良反应,包括感染或炎症反应。植入两周、四周和六周后,与对照组没有骨形成相比,安装了HAp支架的小鼠的骨再生能力明显增强。该研究的通讯作者之一 Seungbum Hong 说:"我们开发出了一种基于 HAp 的压电复合材料,它可以像'骨绷带'一样加速骨再生。这项研究不仅为生物材料的设计提出了新的方向,而且在探索压电性和表面特性对骨再生的影响方面也具有重要意义。"这项研究发表在《ACS 应用材料与界面》杂志上。 ... PC版: 手机版:

封面图片

研究人员开发出可抵御攻击和伪造的自毁电路

研究人员开发出可抵御攻击和伪造的自毁电路 一旦受到破坏,该系统就会提高电路上的工作电压,从而引发电迁移实际上就是将金属原子吹离原位,形成开路和空洞。类似的方法还可用于将工作电压从不到 1 伏提高到 2.5 伏左右,从而加速随时间变化的介质击穿,形成短路与损毁。Eric Hunt-Schroeder领导的团队与Marvell Technology公司合作完成了这个项目。Hunt-Schroeder 说,他是在读到研究人员能够使用扫描电子显微镜克隆基于 SRAM 的 PUF 后,受到启发而开发自毁机制的。这项技术还能有效防止假冒芯片充斥市场。Hunt-Schroeder 指出,当公司用完芯片后,他们可以确保芯片被销毁,使其毫无用处。自毁系统是会议期间重点介绍的几种新型安全技术之一。哥伦比亚大学的一个团队展示了一种能够检测电路上是否连接了探针的解决方案,这有助于抵御坏人对系统进行物理访问的攻击。与此同时,UT 奥斯汀分校的研究人员想出了一种方法,可以屏蔽来自电源和电磁源的信号。在测试中,研究小组在尝试了大约 500 次之后,就能从一个未受保护的芯片中获取密钥。而在有保护措施的情况下,即使尝试了 4000 万次,他们也无法破解密钥。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人