俄罗斯方块启发麻省理工学院在核安全技术方面取得突破

俄罗斯方块启发麻省理工学院在核安全技术方面取得突破 基于"俄罗斯方块"游戏的新型探测器系统可以为监测核基地提供廉价、精确的辐射探测器。图片来源:Ella Maru Studio受"俄罗斯方块"启发的创新传感器设计现在,麻省理工学院和劳伦斯伯克利国家实验室(LBNL)的研究人员已经找到了一种计算方法,可以设计出非常简单、精简的传感器装置,从而精确定位分布式辐射源的方向。该装置以简单的四面体为基础,可以确定辐射源的方向和距离,但探测器像素较少。他们还证明,通过移动传感器获得多个读数,就能精确定位辐射源的物理位置。他们巧妙创新的灵感来自一个令人惊讶的来源:流行的电脑游戏"俄罗斯方块"。麻省理工学院教授李明达、Benoit Forget、高级研究科学家胡令文、首席研究科学家 Gordon Kohse、研究生 Ryotaro Okabe 和 Shangjie Xue、LBNL 的研究科学家 Jayson Vavrek SM '16、PhD '19,以及麻省理工学院和劳伦斯伯克利大学的其他一些人在《自然-通讯》上发表的一篇论文中描述了该团队的研究成果,这些研究成果很可能被推广到其他类型辐射的探测器中。辐射传感的技术进步检测辐射通常使用半导体材料,如碲化镉锌,这种材料在受到伽马射线等高能辐射照射时会产生电反应。但由于辐射很容易穿透物质,因此很难通过简单的计数来确定信号的来源。例如,盖革计数器在接收到辐射时只会发出"咔嗒"声,而无法确定辐射的能量或类型,因此要找到辐射源就需要四处走动,试图找到最大的声音,这与手持式金属探测器的工作原理类似。这个过程需要用户靠近辐射源,这可能会增加风险。为了在不太靠近的情况下提供来自静止设备的方向信息,研究人员使用了一个探测器网格阵列和另一个称为掩膜的网格,掩膜会在阵列上印上根据信号源方向不同而不同的图案。每一个单独的探测器或像素接收到的信号的时间和强度不同,需要通过算法来解释。这通常会导致探测器的复杂设计。用"俄罗斯方块"形状简化检测程序用于感应辐射源方向的典型探测器阵列既庞大又昂贵,在一个 10×10 的阵列中至少包括 100 个像素。然而,该研究小组发现,只要使用四个像素,按照"俄罗斯方块"游戏中的四叶草形状排列,就能接近大型昂贵系统的精确度。关键在于根据每个传感器检测到信号的时间以及每个传感器检测到信号的相对强度,对射线的到达角度进行适当的计算机重建。研究人员尝试了四种不同的像素配置(正方形、S 形、J 形或 T 形),通过反复实验,他们发现 S 形阵列的结果最为精确。这种阵列提供的方向读数精确度在 1 度以内,但所有三种不规则形状的阵列都比正方形阵列表现更好。李说,"这种方法的灵感来自于'俄罗斯方块'"。使系统正常工作的关键是在像素之间放置一种绝缘材料,如铅板,以增加从不同方向进入探测器的辐射读数之间的对比度。这些简化阵列中像素之间的铅片与大型阵列系统中使用的更复杂的阴影遮罩具有相同的功能。研究小组发现,不那么对称的排列能从小型阵列中提供更有用的信息,该研究的主要作者 Okabe 解释说。简化辐射探测器的优势"使用小型探测器的优点在于工程成本方面。不仅单个检测器元件(通常由碲锌镉或 CZT 制成)价格昂贵,而且从这些像素获取信息的所有互连也变得复杂得多。"李补充说:"就应用而言,探测器越小越简单越好。"虽然也有其他版本的简化阵列用于辐射探测,但许多阵列只有在辐射来自单一局部来源时才有效。这项工作的共同第一作者Xue补充说,它们可能会被多个辐射源或分散在空间的辐射源所混淆,而基于"俄罗斯方块"的版本则能很好地处理这些情况。实地测试和实际意义麻省理工学院的研究人员在不知道地面真实辐射源位置的情况下,在伯克利实验室用一个真实的铯辐射源进行了单盲现场测试,测试装置在找到辐射源的方向和距离方面具有很高的准确性。合著者、麻省理工学院核工程教授兼核科学与工程系主任 Forget 说:"辐射绘图对核工业至关重要,因为它有助于快速定位辐射源,保证每个人的安全。"另一位共同第一作者瓦夫雷克说,虽然他们的研究重点是伽马射线源,但他认为他们开发的从有限像素中提取方向信息的计算工具"要通用得多"。它并不局限于某些波长,还可以用于中子,甚至其他形式的光,如紫外线。麻省理工学院核反应堆实验室的资深科学家胡补充说,使用这种基于机器学习的算法和空中辐射探测,"可以对辐射事故进行实时监测和综合应急规划"。爱达荷国家实验室防御系统分部的科学家尼克-曼恩说:"这项工作对美国应对界和日益严重的放射性事件或事故威胁至关重要。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

麻省理工学院天文学家发现18个吞噬附近恒星的黑洞

麻省理工学院天文学家发现18个吞噬附近恒星的黑洞 天文学家通过寻找光学和 X 射线波段的特征爆发,探测到了以前发生过的潮汐破坏事件。迄今为止,这些搜索已经揭示了附近宇宙中大约十几个恒星粉碎事件。麻省理工学院研究小组新发现的潮汐扰动事件比宇宙中已知的潮汐扰动事件多了一倍多。研究人员通过一个非常规波段:红外线发现了这些以前"隐藏"的事件。除了发出光学和X射线暴之外,TDEs还能产生红外辐射,尤其是在"多尘"星系中,在这些星系中,中心黑洞被星系碎片所笼罩。这些星系中的尘埃通常会吸收和遮蔽光学和X射线光,以及这些波段中的任何TDEs迹象。在此过程中,尘埃也会升温,产生可探测到的红外辐射。研究小组发现,红外线辐射可以作为潮汐扰动事件的标志。通过红外波段的观察,麻省理工学院的研究小组在以前隐藏着此类事件的星系中发现了更多的TDEs。这 18 个新事件发生在不同类型的星系中,分散在整个天空中。麻省理工学院的科学家们发现了18个新的潮汐扰动事件(TDEs)即附近恒星被潮汐卷入黑洞并被撕成碎片的极端情况。这些发现是附近宇宙中已知 TDEs 数量的两倍多。图片来源:研究人员提供,经《麻省理工新闻》编辑第一作者、麻省理工学院卡弗里天体物理学和空间研究所研究生梅根-马斯特森说:"这些来源中的大多数并没有在光学波段中显示出来。如果想从整体上了解TDEs,并用它们来探测超大质量黑洞的人口结构,就需要在红外波段进行观察"。"麻省理工学院的其他作者包括 Kishalay De、Christos Panagiotou、Anna-Christina Eilers、Danielle Frostig 和 Robert Simcoe,以及麻省理工学院物理学助理教授 Erin Kara,还有来自德国马克斯-普朗克地外物理研究所等多个机构的合作者。热量峰值研究小组最近通过红外观测发现了距离最近的 TDE。这一发现为天文学家寻找主动觅食的黑洞开辟了一条基于红外线的新途径。这一首次发现促使研究小组开始寻找更多的 TDE。在新的研究中,研究人员搜索了NEOWISENASA宽视场红外巡天探测器的更新版所拍摄的档案观测数据。这颗卫星望远镜于 2009 年发射升空,在短暂的停顿之后,它继续扫描整个天空,寻找红外线"瞬变"或短暂爆发。研究小组利用合著者 Kishalay De 开发的算法查看了任务的存档观测数据。该算法能从红外辐射中找出可能是红外辐射瞬时爆发迹象的模式。然后,研究小组将标记的瞬态辐射与 200 兆帕/秒(或 6 亿光年)范围内所有已知附近星系的星表进行交叉对比。他们发现,红外线瞬变可以追溯到大约 1000 个星系。然后,他们放大了每个星系的红外线爆发信号,以确定该信号是否来自TDE以外的其他来源,如活动星系核或超新星。在排除了这些可能性之后,研究小组又对剩余的信号进行了分析,寻找一种具有TDE特征的红外线模式即一个急剧的尖峰之后是一个逐渐下降的过程,这反映了黑洞在撕裂恒星的过程中突然将周围的尘埃加热到大约1000开尔文,然后逐渐冷却下来的过程。这项分析发现了 18 个"干净"的潮汐扰动事件信号。研究人员对发现每个潮汐破坏事件的星系进行了调查,发现它们发生在整个天空的一系列星系中,包括尘埃星系。马斯顿说:"如果你仰望天空,看到一堆星系,那么TDE就会有代表性地出现在所有星系中。这并不是说,它们只出现在一种类型的星系中,而人们只是根据光学和X射线的搜索结果这么认为的"。"哈佛大学天文学教授埃多-伯杰(Edo Berger)说:"现在我们有可能透过尘埃,完成对附近TDE的普查。这项工作特别令人兴奋的一点是,大型红外巡天观测的后续研究潜力巨大,我很期待看到它们会有什么发现"。"扩大对潮汐扰动事件的了解研究小组的发现有助于解决潮汐扰动事件研究中的一些重大问题。例如,在这项工作之前,天文学家主要是在一种星系中看到潮汐破坏现象一种"后星爆"星系,这种星系以前是恒星形成工厂,但后来沉寂了下来。这种星系类型非常罕见,天文学家们感到困惑的是,为什么TDEs似乎只在这些罕见的星系中出现。碰巧的是,这些星系也相对缺乏尘埃,因此TDE的光学或X射线辐射自然更容易被探测到。现在,通过红外波段的观察,天文学家能够在更多的星系中看到TDEs。研究小组的新成果表明,黑洞可以吞噬一系列星系中的恒星,而不仅仅是后星爆星系。这些发现还解决了一个"能量缺失"的问题。物理学家从理论上预测,TDE 辐射的能量应该比实际观测到的更多。但麻省理工学院的研究小组现在说,尘埃可能可以解释这种差异。他们发现,如果TDE发生在多尘星系中,尘埃本身不仅会吸收光学和X射线辐射,还会吸收极紫外线辐射,其吸收量相当于推测的"缺失能量"。这18次新的探测还有助于天文学家估算特定星系中发生潮汐破坏事件的频率。当他们把新的 TDE 与之前的探测结果相比较时,他们估计一个星系每 5 万年就会发生一次潮汐破坏事件。这个频率更接近物理学家的理论预测。通过更多的红外观测,研究小组希望能够解析潮汐破坏事件的发生率,以及引发潮汐破坏事件的黑洞的特性。卡拉说:"人们对这些谜题提出了非常奇特的解决方案,而现在我们已经到了可以解决所有谜题的地步。这给了我们信心,我们不需要所有这些奇异的物理学来解释我们所看到的一切。我们对恒星如何被黑洞撕裂和吞噬背后的力学原理有了更好的了解。我们正在更好地理解这些系统。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

【英格兰银行与麻省理工学院就央行数字货币研究开展合作】

【英格兰银行与麻省理工学院就央行数字货币研究开展合作】 3月26日消息,英格兰银行周五宣布,已经与麻省理工学院媒体实验室数字货币计划(简称DCI)达成协议,将共同开展为期12个月的央行数字货币(CBDC)研究项目。该银行在一份声明中说,这个新项目仅用于研究目的,并不打算开发一个可操作的CBDC。 此前报道,加拿大银行上周宣布了与麻省理工学院为期一年的联合研究工作,而波士顿联储则在2020年启动了与DCI的合作。

封面图片

麻省理工学院揭幕"质子之舞": 开拓能源新时代

麻省理工学院揭幕"质子之舞": 开拓能源新时代 麻省理工学院的化学家们首次详细描绘了这些质子耦合电子转移是如何在电极表面发生的。他们的研究成果可以帮助研究人员设计出更高效的燃料电池、电池或其他能源技术。麻省理工学院化学和化学工程教授、该研究的资深作者 Yogesh Surendranath 说:"我们在这篇论文中取得的进展是研究和理解了这些电子和质子如何在表面部位耦合的性质,这与催化反应有关,而催化反应在能量转换装置或催化反应中非常重要。"在他们的研究成果中,研究人员能够准确追踪电极周围电解质溶液 pH 值的变化如何影响电极内质子运动和电子流动的速度。麻省理工学院研究生诺亚-刘易斯(Noah Lewis)是这篇论文的第一作者,论文最近发表在《自然-化学》上。麻省理工学院前博士后 Ryan Bisbey、麻省理工学院研究生 Karl Westendorff 和耶鲁大学研究科学家 Alexander Soudackov 也是这篇论文的作者。质子传递质子耦合电子转移是指一种分子(通常是水或酸)将质子转移到另一种分子或电极表面,从而刺激质子接受者也接受一个电子。这种反应已被广泛应用于能源领域。"这些质子耦合电子转移反应无处不在。它们通常是催化机制中的关键步骤,对于制氢或燃料电池催化等能量转换过程尤为重要,"Surendranath 说。在制氢电解槽中,这种方法用于从水中去除质子,并在质子上添加电子以形成氢气。在燃料电池中,当质子和电子从氢气中移出并加入氧气形成水时,就会产生电能。施加电势会导致质子从氢离子(右图)转移到电极表面。利用具有分子定义质子结合位点的电极,麻省理工学院的研究人员为这些界面质子耦合电子转移反应建立了一个通用模型。图片来源:研究人员提供质子耦合电子转移在许多其他类型的化学反应中都很常见,例如二氧化碳还原(通过添加电子和质子将二氧化碳转化为化学燃料)。当质子接受体是分子时,科学家们可以精确控制每个分子的结构,并观察电子和质子如何在分子间传递,因此他们已经对这些反应的发生过程有了很多了解。然而,当质子耦合电子转移发生在电极表面时,这一过程就更难研究了,因为电极表面通常非常异质,质子有可能与许多不同的位点结合。为了克服这一障碍,麻省理工学院的研究小组开发出一种设计电极表面的方法,使他们能够更精确地控制电极表面的组成。他们的电极由石墨烯薄片组成,表面附着有机含环化合物。每个有机分子的末端都有一个带负电荷的氧离子,它可以接受周围溶液中的质子,从而使电子从电路流入石墨表面。Surendranath 说:"我们可以创造出一种电极,它不是由各种各样的位点组成,而是由单一类型的非常明确的位点组成的统一阵列,每个位点都能以相同的亲和力结合质子。由于我们拥有这些非常明确的位点,这让我们能够真正揭示这些过程的动力学"。利用这个系统,研究人员能够测量流向电极的电流,从而计算出平衡状态下质子向表面氧离子转移的速率质子向表面捐赠的速率和质子从表面转移回溶液的速率相等的状态。他们发现,周围溶液的 pH 值对这一速率有显著影响: 最高速率出现在 pH 值的两端酸性最强的 pH 值为 0,碱性最强的 pH 值为 14。为了解释这些结果,研究人员根据电极可能发生的两种反应建立了一个模型。在第一种反应中,强酸性溶液中高浓度的氢离子(H3O+)将质子传递给表面的氧离子,生成水。在第二种情况下,水将质子传递给表面氧离子,生成氢氧根离子(OH-),氢氧根离子在强碱性溶液中浓度较高。不过,pH 值为 0 时的速度比 pH 值为 14 时的速度快四倍,部分原因是氢离子释放质子的速度比水快。需要重新考虑的反应研究人员还惊奇地发现,这两个反应的速率并不是在中性 pH 值为 7(氢铵和氢氧根的浓度相等)时相等,而是在 pH 值为 10(氢氧根离子的浓度是氢铵的 100 万倍)时相等。该模型表明,这是因为涉及氢𬭩或水提供质子的前向反应比涉及水或氢氧化物去除质子的后向反应对总速率的贡献更大。研究人员说,关于这些反应如何在电极表面发生的现有模型假定,前向反应和后向反应对总速率的贡献相同,因此新发现表明,可能需要重新考虑这些模型。Surendranath说:"这是默认的假设,即正向和逆向反应对反应速率的贡献相同。我们的发现确实令人大开眼界,因为这意味着人们用来分析从燃料电池催化到氢进化等一切问题的假设可能是我们需要重新审视的。"研究人员目前正在利用他们的实验装置研究向电极周围的电解质溶液中添加不同类型的离子会如何加快或减慢质子耦合电子流的速度。刘易斯说:"通过我们的系统,我们知道我们的位点是恒定的,不会相互影响,因此我们可以读出溶液的变化对表面反应的影响。"编译自//scitechdaily ... PC版: 手机版:

封面图片

《麻省理工学院公开课:供应链管理》

《麻省理工学院公开课:供应链管理》 简介:本书系统解析麻省理工学院公开课:供应链管理的核心内容,并结合实用案例帮助读者加深理解。内容涵盖其发展历程、关键概念及实际应用,提供深入的知识探索路径。适合对该主题有兴趣的学习者,帮助拓宽视野并提高专业素养。 标签: #麻 #麻省理工 #知识 #学习 文件大小:NG 链接:

封面图片

麻省理工学院在将二维材料集成到设备方面取得突破

麻省理工学院在将二维材料集成到设备方面取得突破 这幅艺术家的作品展示了麻省理工学院研究人员开发的一种新型集成平台。通过对表面力进行工程设计,他们只需一个接触和释放步骤,就能将二维材料直接集成到设备中。图片来源:Sampson Wilcox/电子研究实验室提供但是,将二维材料集成到计算机芯片等设备和系统中是众所周知的难题。这些超薄结构可能会受到传统制造技术的破坏,这些技术通常依赖于使用化学品、高温或蚀刻等破坏性工艺。为了克服这一挑战,麻省理工学院和其他大学的研究人员开发出了一种新技术,只需一步就能将二维材料集成到设备中,同时保持材料表面和由此产生的界面原始无缺陷。他们的方法依赖于纳米级的工程表面力,使二维材料可以物理叠加到其他预制设备层上。由于二维材料不会受损,研究人员可以充分利用其独特的光学和电学特性。所开发的平台利用行业兼容的工具集,使这一过程可以扩展。在这里,主要作者彼得-萨特斯韦特(Peter Satterthwaite)使用 MIT.nano 中修改过的配准工具进行图案化配准集成。他们利用这种方法制造出了二维晶体管阵列,与使用传统制造技术制造出的器件相比,实现了新的功能。他们的方法用途广泛,可用于多种材料,可在高性能计算、传感和柔性电子器件等领域广泛应用。释放这些新功能的核心是形成清洁界面的能力,所有物质之间存在的特殊力量(称为范德华力)将这些界面连接在一起。电子工程与计算机科学(EECS)助理教授、电子学研究实验室(RLE)成员 Farnaz Niroui 是介绍这项工作的新论文的资深作者。"范德华积分有一个基本限制,"她解释说,"由于这些作用力取决于材料的内在特性,因此无法轻易调整。因此,有些材料无法仅利用其范德华相互作用来直接相互整合。我们提出了一个解决这一限制的平台,以帮助范德华集成变得更加通用,从而促进具有新功能和改进功能的基于二维材料的设备的开发。"Niroui 与论文第一作者、电子工程与计算机科学研究生 Peter Satterthwaite,电子工程与计算机科学教授、RLE 成员 Jing Kong,以及麻省理工学院、波士顿大学、台湾国立清华大学、台湾国家科学技术委员会和台湾国立成功大学的其他人共同撰写了这篇论文,这项研究最近发表在《自然-电子学》上。纳米级表面力的多样性使研究人员能够将粘合剂基质转移到许多不同的材料上。例如,在这里,通过使用粘合聚合物,他们能够将图案化的石墨烯(一原子厚的碳薄片)从源基底(上图)转移到接收粘合聚合物(下图)上。图片来源:Niroui 小组提供使用传统制造技术制造计算机芯片等复杂系统可能会变得一团糟。通常情况下,像硅这样的硬质材料会被凿成纳米级,然后与金属电极和绝缘层等其他元件连接,形成有源器件。这种加工过程会对材料造成损害。最近,研究人员专注于使用二维材料和一种需要连续物理堆叠的工艺,自下而上地构建设备和系统。在这种方法中,研究人员不是使用化学胶水或高温将脆弱的二维材料粘合到硅等传统表面上,而是利用范德华力将一层二维材料物理集成到设备上。范德华力是存在于所有物质之间的自然吸引力。例如,壁虎的脚会因为范德华力而暂时粘在墙上。虽然所有材料都存在范德华力,但根据材料的不同,范德华力并不总是强大到足以将它们粘在一起。例如,一种名为二硫化钼的流行半导体二维材料会粘在黄金上,但不会通过与二氧化硅等绝缘体表面的物理接触直接转移到该表面上。然而,通过整合半导体层和绝缘层制成的异质结构是电子设备的关键组成部分。以前,实现这种集成的方法是将二维材料粘合到一个中间层(如金)上,然后使用该中间层将二维材料转移到绝缘体上,最后再使用化学品或高温去除中间层。麻省理工学院的研究人员没有使用这种牺牲层,而是将低粘性绝缘体嵌入高粘性基质中。这种粘合基质使二维材料粘附在嵌入的低粘合力表面上,提供了在二维材料和绝缘体之间形成范德华界面所需的力。制作矩阵为了制造电子设备,他们在载体基底上形成金属和绝缘体的混合表面。然后将该表面剥离并翻转,就会看到一个完全光滑的顶面,其中包含所需的器件构件。这种光滑度非常重要,因为表面和二维材料之间的间隙会阻碍范德华相互作用。然后,研究人员在完全洁净的环境中单独制备二维材料,并将其与制备好的器件堆栈直接接触。"一旦混合表面与二维层接触,无需任何高温、溶剂或牺牲层,它就能拾取二维层并将其与表面整合在一起。"萨特斯韦特解释说:"通过这种方式,我们可以实现传统上被禁止的范德华集成,但现在却可以实现,而且只需一步就能形成功能齐全的器件。"这种单步工艺可使二维材料界面保持完全清洁,从而使材料达到其性能的基本极限,而不会受到缺陷或污染的影响。而且,由于二维材料的表面也保持原始状态,研究人员可以对二维材料的表面进行工程设计,以形成与其他元件的特征或连接。例如,他们利用这种技术制造出了 p 型晶体管,而利用二维材料制造这种晶体管通常是具有挑战性的。他们的晶体管在以前的研究基础上有所改进,可以为研究和实现实用电子产品所需的性能提供一个平台。展望未来他们的方法可以大规模地制造更大的装置阵列。粘合基质技术还可用于一系列材料,甚至与其他力量结合使用,以增强这一平台的多功能性。例如,研究人员将石墨烯集成到器件上,利用聚合物基质形成所需的范德华界面。在这种情况下,粘附依靠的是化学作用,而不仅仅是范德华力。未来,研究人员希望以此平台为基础,整合各种二维材料库,在不受加工损伤影响的情况下研究其内在特性,并利用这些卓越功能开发新的设备平台。编译自:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院在有毒气体检测技术方面取得了突破性进展

麻省理工学院在有毒气体检测技术方面取得了突破性进展 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 新系统结合了两种现有技术,既保留了各自的优点,又避免了它们的局限性。研究小组使用了一种被称为金属有机框架(MOF)的材料,这种材料对微量气体非常敏感,但其性能很快就会退化,研究小组将其与一种聚合物材料相结合,这种材料非常耐用,更易于加工,但敏感性要低得多。麻省理工学院教授 Aristide Gumyusenge、Mircea Dinca、Heather Kulik 和 Jesus del Alamo、研究生 Heejung Roh 以及博士后 Dong-Ha Kim、Yeongsu Cho 和 Young-Moo Jo 今天在《先进材料》(Advanced Materials)杂志上发表了一篇论文,报告了这一研究成果。麻省理工学院的研究人员开发出一种探测器,可以低成本持续监测有毒气体的存在。研究小组使用了一种名为金属有机框架(MOF)的材料(图中为黑色晶格),这种材料对微量气体高度敏感,但其性能很快就会退化。他们将 MOF 与一种聚合物材料(如图中的茶色半透明链)相结合,这种材料非常耐用,但灵敏度要低得多。图片来源:研究人员提供MOFs多孔性强,表面积大,有多种成分。有些可能是绝缘体,但本研究中使用的 MOFs 具有很强的导电性。它们的形状像海绵,能有效捕捉各种气体分子,其孔隙的大小可以定制,使它们对特定种类的气体具有选择性。"论文的资深作者、材料科学与工程系 Merton C. Flemings 职业发展助理教授 Gumyusenge 说:"如果把它们用作传感器,只要气体对 MOF 的电阻率有影响,就能识别出气体是否存在。这些材料用作气体检测器的缺点是容易饱和,无法再检测和量化新输入的气体。"这不是你想要的。你想要的是能够检测和重复使用,"Gumyusenge 说。"因此,我们决定使用聚合物复合材料来实现这种可逆性。"研究小组使用了一类导电聚合物,Gumyusenge 和他的同事们之前已经证明,这类聚合物可以对气体做出反应,而不会与气体永久结合。"他说:"这种聚合物虽然没有 MOFs 那样的高表面积,但至少可以提供这种识别-释放型现象。研究人员在一个实验室规模的小型装置中展示了这种材料检测一氧化二氮(一种由多种燃烧产生的有毒气体)的能力。经过 100 次检测后,这种材料仍能保持其基线性能,误差在 5% 到 10% 之间,这证明了它具有长期使用的潜力。以下是传感装置的布局。图片来源:研究人员提供研究小组将液态溶液中的聚合物与粉末状的 MOF 材料结合在一起,然后将混合物沉积在基底上,干燥后形成一层均匀的薄涂层。他说:"通过将具有快速检测能力的聚合物和灵敏度更高的 MOF 以一比一的比例结合在一起,我们突然得到了一种传感器,它既具有 MOF 带来的高灵敏度,又具有聚合物带来的可逆性。"当气体分子暂时滞留在材料中时,材料的电阻会发生变化。只需安装一个欧姆表来跟踪电阻随时间的变化,就能持续监测这些电阻变化。Gumyusenge 和他的学生们在一个实验室规模的小型装置中演示了这种复合材料检测二氧化氮的能力。经过 100 次检测后,该材料仍能保持其基线性能,误差在 5% 到 10% 之间,证明了其长期使用的潜力。此外,研究小组报告说,这种材料的灵敏度远远高于目前使用的大多数二氧化氮检测器。这种气体经常在使用炉灶后被检测到。而且,由于这种气体最近与美国的许多哮喘病例有关,因此对低浓度的可靠检测非常重要。研究小组证明,这种新型复合材料可以可逆地检测到浓度低至百万分之二的气体。虽然他们的演示是专门针对二氧化氮的,但 Gumyusenge 说:"我们可以调整化学成分,使其针对其他挥发性分子,只要它们是小的极性分析物,这往往是大多数有毒气体"。除了与简单的手持式探测器或烟雾报警装置兼容之外,这种材料的一个优点是,聚合物使其能够沉积成极薄的均匀薄膜,而不像普通的 MOFs 通常是低效的粉末状。由于薄膜非常薄,因此所需的材料很少,生产材料成本可能很低;加工方法可以是典型的工业涂料加工方法。Gumyusenge说:"因此,限制因素可能是聚合物合成规模的扩大,我们一直在少量合成聚合物。"他说:"下一步将是在实际环境中对这些材料进行评估。例如,可以在烟囱或排气管上涂上这种材料,通过附带的电阻监测装置读取数据,对气体进行连续监测。在这种环境下,我们需要进行测试,以检查我们是否真正将其与实验室环境中可能忽略的其他潜在污染物区分开来。让我们把传感器放到真实世界的场景中,观察它们的效果如何"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人