睡眠会重置大脑连接――但只在最初的几个小时内

睡眠会重置大脑连接――但只在最初的几个小时内 研究人员表示,这项研究支持了突触内稳态假说,这是一个关于睡眠目的的关键理论,该理论认为睡眠可以作为大脑的重置。该研究的主要作者Jason Rihel教授(伦敦大学学院细胞与发育生物学)说:“当我们醒着的时候,脑细胞之间的联系变得更强、更复杂。如果这种活动继续有增无减,它将在能量上不可持续。脑细胞之间过多的活跃连接可能会阻碍第二天新的连接的建立。“虽然睡眠的功能仍然很神秘,但它可能是一段‘离线’时期,在这段时间里,大脑中的这些连接会被削弱,为我们第二天学习新事物做准备。”在这项研究中,科学家们使用了光学半透明的斑马鱼,其基因使突触(脑细胞之间沟通的结构)易于成像。研究小组对这些鱼进行了几个睡眠-觉醒周期的监测。研究人员发现,脑细胞在清醒时获得更多的连接,然后在睡眠时失去它们。他们发现,这取决于动物在被允许休息之前积累了多少睡眠压力(睡眠需求);如果科学家让鱼多睡几个小时,这些连接会继续增加,直到它能够睡觉。Rihel教授补充说:“如果我们观察到的模式在人类身上也适用,我们的研究结果表明,在中午小睡时,当睡眠压力仍然很低时,突触的重塑可能不如在我们真正需要睡眠的晚上有效。”研究人员还发现,这些神经元之间连接的重新排列主要发生在动物夜间睡眠的前半段。这反映了慢波活动的模式,慢波活动是睡眠周期的一部分,在夜晚开始时最强烈。第一作者Anya supmpool博士说:“我们的研究结果进一步证实了睡眠有助于抑制大脑内部联系的理论,为第二天更多的学习和新的联系做准备。”但我们的研究并没有告诉我们后半夜发生了什么。还有其他理论认为,睡眠是清除大脑废物或修复受损细胞的时间――也许其他功能会在后半夜开始发挥作用。” ... PC版: 手机版:

相关推荐

封面图片

我们的大脑如何工作?连接实验室培育的脑细胞产生新见解

我们的大脑如何工作?连接实验室培育的脑细胞产生新见解 东京大学工业科学研究所的研究人员发现,为实验室培育的"大脑器官"提供与真实大脑类似的连接,可以促进其发育和活动。资料来源:东京大学工业科学研究所神经研究的进展研究大脑发育和功能的确切机制具有挑战性。动物研究受到物种间大脑结构和功能差异的限制,而实验室培育的脑细胞往往缺乏人脑细胞特有的连接。更重要的是,研究人员越来越意识到,这些区域间的连接及其形成的回路,对于我们人类的许多大脑功能非常重要。以前的研究曾试图在实验室条件下创建大脑回路,这推动了这一领域的发展。东京大学的研究人员最近找到了一种方法,可以在实验室培育的"神经器官"(一种实验模型组织,将人类干细胞培育成模仿大脑发育的三维结构)之间建立更多生理连接。研究小组通过轴突束将有机体连接起来,这与活体人脑中各区域的连接方式类似。通过创新增进理解该研究的共同第一作者杜恩基(Tomoya Duenki)说:"在实验室条件下生长的单神经器官中,细胞开始显示出相对简单的电活动。当我们用轴索束连接两个神经器官组织时,我们能够看到这些双向连接是如何促进器官组织之间活动模式的产生和同步的,这与大脑内两个区域之间的连接有一定的相似性。"与轴索束相连的大脑器官组织比单个器官组织或使用以前的技术相连的器官组织显示出更复杂的活动。此外,当研究小组使用一种被称为光遗传学的技术刺激轴索束时,类器官的活动也会发生相应的变化,类器官会在一段时间内受到这些变化的影响,这一过程被称为可塑性。研究的资深作者 Yoshiho Ikeuchi 解释说:"这些发现表明,轴索束连接对于复杂网络的发展非常重要。"值得注意的是,复杂的大脑网络负责许多深层次的功能,如语言、注意力和情感。"鉴于大脑网络的改变与各种神经和精神疾病有关,因此更好地了解大脑网络非常重要。对实验室培养的人类神经回路进行研究,将有助于我们更好地了解这些网络在不同情况下是如何形成并随时间发生变化的,从而改进治疗这些疾病的方法。编译自:ScitechDaily ... PC版: 手机版:

封面图片

针对阿尔茨海默氏症的研究发现女性大脑中有更多"老"细胞

针对阿尔茨海默氏症的研究发现女性大脑中有更多"老"细胞 加利福尼亚大学圣迭戈分校的工程师们发现,某些脑细胞比其他脑细胞衰老得更快,在阿尔茨海默氏症患者中更为常见。他们还注意到,特定脑细胞的衰老在性别间存在差异,与男性大脑皮层相比,女性大脑皮层中"老"少突胶质细胞的比例相对于"老"神经元更高。这一发现得益于一种名为MUSIC(单细胞多核酸相互作用图谱)的新技术,它能让研究人员窥视单个脑细胞内部,并绘制出染色质即DNA和RNA的紧密盘绕形式之间的相互作用图谱。这项技术使研究人员能够以单细胞分辨率观察这些相互作用,并研究它们如何影响基因表达。这项工作的详细情况发表在《自然》杂志上的一篇论文中。该研究的资深作者、加州大学圣地亚哥分校雅各布斯工程学院舒建-基因-雷生物工程系教授钟胜说:"MUSIC 是一种强大的工具,可以让我们更深入地挖掘阿尔茨海默病的复杂性。这项技术有可能帮助我们发现阿尔茨海默病病理的新分子机制,从而为更有针对性的治疗干预和改善患者预后铺平道路。"人脑中的细胞组成了一个复杂的网络,它们以错综复杂的方式进行交流和互动。在每个细胞中,包括染色质和 RNA 在内的基因成分动态地相互作用,决定着细胞的关键功能。随着脑细胞的生长和衰老,染色质和 RNA 之间的相互作用也会发生变化。而在每个细胞内,这些复合物也会发生很大变化,尤其是在成熟细胞中。然而,揭示这些相互作用的细微差别仍然是一项艰巨的挑战。MUSIC是一种尖端工具,它为了解单个脑细胞的内部运作提供了一个窗口。钟教授的团队利用 MUSIC 分析了 14 名 59 岁及以上捐献者的死后大脑样本,特别是人类额叶皮层组织,其中有些人患有阿尔茨海默病,有些人则没有。他们发现,不同类型的脑细胞表现出染色质和 RNA 之间不同的相互作用模式。有趣的是,短程染色质相互作用较少的细胞往往表现出衰老和阿尔茨海默病的迹象。钟说:"通过这种变革性的单细胞技术,我们发现有些脑细胞比其他脑细胞'老'。他解释说,值得注意的是,与健康人相比,阿尔茨海默氏症患者的这些老化脑细胞比例更高。"这一发现有助于开发阿尔茨海默病的新疗法。如果能确定这些老化细胞中的失调基因,并了解它们在局部染色质结构中的功能,那就能确定新的潜在治疗靶点。研究还发现了脑细胞衰老的性别差异。在雌性小鼠的大脑皮层中,研究人员发现老化的少突胶质细胞与老化的神经元的比例更高。少突胶质细胞是一种脑细胞,为神经元周围提供保护层。鉴于少突胶质细胞在维持大脑正常功能方面的关键作用,老化少突胶质细胞的增加可能会加剧认知能力的衰退。女性大脑皮层中存在不成比例的老化少突胶质细胞,这可能会对女性患神经退行性疾病和精神疾病的风险增加带来新的启示。接下来,研究人员将致力于进一步优化MUSIC,以便利用它来识别导致特定脑细胞加速衰老的因素,如调控基因和基因回路。随后,研究人员将制定策略来阻碍这些基因或基因回路的活动,希望能减轻大脑的衰老。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家绘制人类大脑一小部分的高分辨率地图

科学家绘制人类大脑一小部分的高分辨率地图 根据发表在《》期刊上的一项研究,哈佛和 Google 的科学家绘制出人类大脑一小部分的高分辨率 3D 地图。图谱揭示了脑细胞神经元之间的新连接模式,以及围绕自身形成结的细胞,以及几乎互为镜像的成对神经元。3D 地图覆盖了大约一立方毫米的体积,是整个大脑的百万分之一,包含了大约 57,000 个细胞和 1.5 亿个突触。它包含了 1.4 pb 的庞大数据。这块大脑碎片取自一名 45 岁的女性,当时她正在接受治疗癫痫的手术。它来自大脑皮层,这是大脑中负责学习、解决问题和处理感官信号的部分。样品浸泡在防腐剂中,并用重金属染色,使细胞更容易被看到。研究人员将样本切成大约 5000 片每片只有 34 纳米厚可以用电子显微镜成像。他们建立了 AI 模型,能将显微镜图像拼接在一起,以 3D 方式重建整个样本。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

深度睡眠不会完全切断大脑与外界的联系

深度睡眠不会完全切断大脑与外界的联系 睡眠被普遍认为是一种与环境脱节的行为状态,睡觉就意味着人对周围环境的意识中断。但一项最新研究显示,深度睡眠并不会完全切断大脑与外界的联系。 美国西北大学等机构的研究团队日前在英国《自然·神经学》杂志上发表论文说,受试者会根据研究人员说的话,在特定睡眠阶段作出微笑或皱眉的反应。 新华社报道,在一项研究中,研究人员观察了27名发作性睡病患者和22名没有该疾病的人。发作性睡病的特征为白天犯困,以及清醒梦的出现频率较高。研究团队通过固定在头皮上的电极捕捉电信号生成的脑电图记录研究对象脑活动。 研究发现,当这些研究对象睡觉时,研究人员反复要求他们皱眉或微笑,所有人能对至少70%的提示作出正确回应。此外,所有人的回应率在快速眼动睡眠期间更高。快速眼动期间会出现深度睡眠,但大脑相对其他睡眠阶段更为活跃。 专家说,类似研究或能让研究人员进一步了解各种睡眠疾病,包括失眠和梦游,还能发现哪些脑区会在睡眠中保持活跃,以及它们与意识的关联。 2023年11月6日 11:35 PM

封面图片

解码小鼠的思维:索尔克研究所具有里程碑意义的表观基因组大脑图谱

解码小鼠的思维:索尔克研究所具有里程碑意义的表观基因组大脑图谱 这些工作由美国国立卫生研究院的"通过推进创新神经技术进行大脑研究计划"(BRAINInitiative)负责协调,该计划的最终目标是为哺乳动物的大脑绘制一幅全新的动态图像。索尔克教授、遗传学国际理事会主席、霍华德-休斯医学研究所研究员约瑟夫-埃克(Joseph Ecker)说:"通过这项工作,我们不仅获得了关于哪些细胞构成了小鼠大脑的大量信息,还了解了这些细胞内的基因是如何被调控的,以及这些基因是如何驱动细胞功能的。当利用这个基于表观基因组的细胞图谱,开始研究已知会导致人类疾病的基因变异时,就会对哪些细胞类型在疾病中可能最脆弱有了新的认识"。美国国立卫生研究院大脑计划于 2014 年启动,已为研究人员提供了 30 多亿美元的资金,用于开发变革性技术并将其应用于脑科学。2021年,得到"脑神经启示录计划"(BRAIN Initiative)支持的研究人员包括索尔克(Salk)的团队公布了小鼠大脑图谱的初稿,该图谱开创了描述神经元特征的新工具,并将这些工具应用于小鼠大脑的小切片。今年早些时候,许多相同的技术被用于绘制最初的人脑图谱。在最新的工作中,研究人员扩大了研究细胞的数量和小鼠大脑的区域,并使用了过去几年才出现的新的单细胞技术。左上图:解剖小鼠大脑的三维效果图,根据解剖的脑区划分为不同的部分;左下图:小鼠大脑的三维效果图,根据解剖的脑区划分为不同颜色的部分(黄色、蓝色、水蓝色、绿色、粉色、橙色、棕色、红色)。右上角:小鼠大脑的垂直切片,不同颜色(橙色、绿色、蓝色、水蓝色、红色、紫色)代表不同细胞类型,代表特定细胞类型在该切片中的空间位置;右下角:小鼠大脑的垂直切片,不同颜色(橙色、绿色、蓝色、水蓝色、红色、紫色)代表不同细胞类型,代表特定细胞类型在该切片中的空间位置:多色圆圈(黄色、蓝色、水蓝色、绿色、粉红色、橙色、棕色、红色)代表根据表观基因组剖析在小鼠整个大脑中发现的细胞类型的数量和多样性。资料来源:索尔克研究所全脑分析和公众可及性两篇新论文的资深作者爱德华-卡拉韦教授说:"这是整个大脑的研究,以前从未有过。观察整个大脑会产生一些想法和原理,而这些想法和原理是你每次观察一个部分所无法了解的"。为了帮助其他研究小鼠大脑的研究人员,新数据通过一个在线平台公开发布,不仅可以通过数据库进行搜索,还可以使用人工智能工具 ChatGPT 进行查询。索尔克研究教授玛格丽塔-贝伦斯(Margarita Behrens)补充说:"将小鼠作为模式生物的人非常多,这为他们在涉及小鼠大脑的研究中提供了一个非常强大的新工具。"这期《自然》特刊共刊登了 10 篇美国国立卫生研究院大脑计划(NIH BRAIN Initiative)的文章,其中 4 篇由索尔克研究人员合著,描述了小鼠大脑的细胞及其连接。这四篇论文中的亮点包括单细胞 DNA 甲基化图谱为了确定小鼠大脑中的所有细胞类型,索尔克研究人员采用了一次分析一个脑细胞的尖端技术。这些单细胞方法既研究细胞内DNA的三维结构,也研究DNA上附着的甲基化学基团的模式这是基因受细胞控制的两种不同方式。2019年,埃克的实验室小组开创了同时进行这两项测量的方法,这让研究人员不仅能研究出不同细胞类型中哪些基因程序被激活,还能研究出这些程序是如何开启和关闭的。研究小组发现了基因在不同细胞类型中通过不同方式被激活的例子,就像用两个不同的开关打开或关闭电灯一样。了解了这些重叠的分子回路,研究人员就能更容易地开发出干预脑部疾病的新方法。埃克实验室的博士后研究员、本文第一作者刘汉清说:"如果你能了解这些细胞类型中所有重要的调控元素,你也就能开始了解细胞的发育轨迹,这对了解自闭症和精神分裂症等神经发育疾病至关重要。"研究人员还对大脑的哪些区域含有哪些细胞类型有了新的发现。在对这些细胞类型进行编目时,他们还发现脑干和中脑的细胞类型远远多于大得多的大脑皮层这表明大脑的这些较小部分可能进化出了更多的功能。单细胞染色质图另一种间接确定DNA结构以及细胞正在积极利用哪段遗传物质的方法是测试哪些DNA可以被其他分子结合。加州大学圣地亚哥分校的任兵(Bing Ren)领导的研究人员(包括索尔克的埃克和贝伦斯)利用这种称为染色质可及性的方法,绘制了来自117只小鼠的230万个脑细胞的DNA结构图。然后,研究小组利用人工智能,根据这些染色质可及性模式,预测DNA的哪些部分是细胞状态的总体调控因子。他们发现的许多调控元件都位于DNA片段中,而这些DNA片段已经与人类脑部疾病有牵连;关于哪些细胞类型使用哪些调控元件的新知识有助于确定哪些细胞与哪些疾病有牵连。神经元投射和连接在贝伦斯、卡拉韦和埃克共同撰写的另一篇论文中,研究人员绘制了整个小鼠大脑神经元之间的连接图。然后,他们分析了这些图谱与细胞内甲基化模式的对比。这让他们发现了哪些基因负责引导神经元到达大脑的哪些区域。埃克实验室的博士后研究员、该论文的共同第一作者周景天(音译)说:"我们发现了某些规则,这些规则根据细胞的DNA甲基化模式决定细胞投射到哪里。"神经元之间的连接对其功能至关重要,而这套新规则可能有助于研究人员研究疾病中出现问题的原因。比较小鼠、猴子和人类的运动皮层运动皮层是哺乳动物大脑中参与计划和执行自主肢体运动的部分。贝伦斯、埃克和任领导的研究人员研究了来自人类、小鼠和非人灵长类运动皮层的 20 多万个细胞的甲基化模式和 DNA 结构,以更好地了解运动皮层细胞在人类进化过程中的变化。他们能够确定特定调控蛋白的进化与基因表达模式进化之间的相关性。他们还发现,近 80% 的人类特有的调控元件是可转座元件DNA 的移动小段,可以很容易地改变在基因组中的位置。"我认为,总的来说,这一整套研究为其他人未来的研究提供了蓝图,"索尔克分子神经生物学文森特-科茨讲座教授卡拉韦说。"研究特定细胞类型的人现在可以查看我们的数据,了解这些细胞的所有连接方式以及它们的所有调控方式。这是一种资源,可以让人们提出自己的问题"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

DNA、睡眠、免疫、感情、细胞、脑……

DNA、睡眠、免疫、感情、细胞、脑…… \人体充满了谜团!!/   什么是「酒醉」?   骨骼是由什么构成?   发胖为何对身体有害?   「死亡」是什么样的状态?   「感染病毒」是什么样的状态……?   满足上述问题的所有解答,本书以轻松易懂的插图与文字来介绍「人体构成」!   每个人的身体组成都不相同,只有相似,   因为没有统一的答案,所以人体有胖有瘦、有高有矮,   这正是探究人体的乐趣所在。   本书介绍89个关于人体之「为什么?」的案例,   里面充满许多让人惊叹造物主创造人的创意与巧思,   不妨参考这些问题,规划并打造出自己理想中的「好身体」吧!   明天就想畅聊的人体话题   将人脑数位化?大脑有可能人工化吗?   大脑有办法以人工方式制造出来吗?   目前除了大脑外,几乎所有器官都有以人工方式制造的替代器官、人工器官,并且也都还在不断地持续研究当中。被制造出来的人工器官只能单纯用于医疗目的,然而制造出复杂的大脑至今仍是一项遥不可及的梦想。   话虽如此,只要使用能够分化成任何细胞的iPS细胞(→P64),理论上是有可能制造出大脑的。目前研究人员已从iPS细胞制造出豆子大小的人工脑「类人脑」,正在进行应用在治疗脑部疾病上的研究。   另外,随著电脑的进化,也有研究人员提出将人脑数位化的想法。究竟将大脑替换成机器那样的人工制品是有可能的吗?   人的大脑中有神经细胞和神经胶质细胞(神经细胞以外的脑细胞),不仅创造出无数突触,而且每天都不断地在产生变化。凭现在的技术,要复制如此复杂的大脑,然后让大脑在电脑上彻底重现应该是不可能的。况且,即便真的能够制造出一模一样的大脑,最大的问题还是我们的「意识」。至今,我们仍无法厘清人是如何产生意识,以及其中的机制。就算真的能够制造出和自己一模一样的大脑,我们也无从得知该意识是否属于自己。   只不过,也有人提出了这样的想法。澳洲哲学家查默斯想出了一个名为「fading qualia」的思想实验〔下图〕。假如在大脑有意识的状态下,一个一个慢慢地将大脑神经细胞替换成矽制人工神经细胞,届时会发生什么事?他认为,大脑不会发现神经细胞遭到替换,人的感质(感觉意识体验)还是会维持原样。「人的意识存在于何处」这个命题,是窥探哲学深渊的问题。 作者介绍 监修者简介 大和田洁   医师,医学博士。东京都葛饰区出生。福岛县立医科大学毕业后,进入东京医科齿科大学神经内科进修。曾在急救医院等单位任职,而后于同所大学的研究所从事基础医学研究。秋叶原车站诊所院长(现职),东京医科齿科大学临床教授。综合内科专科医师、神经内科专科医师、日本头痛学会指导医师、日本临床营养协会理事。著有《知らずに饮んでいた薬の中身》(祥传社新书)等。监修书有《のほほん解剖生理学》、《じにのみるだけ疾患 まとめイラスト》(永冈书店)等。经常接受采访及参与媒体演出。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人