科学家绘制人类大脑一小部分的高分辨率地图

科学家绘制人类大脑一小部分的高分辨率地图 根据发表在《》期刊上的一项研究,哈佛和 Google 的科学家绘制出人类大脑一小部分的高分辨率 3D 地图。图谱揭示了脑细胞神经元之间的新连接模式,以及围绕自身形成结的细胞,以及几乎互为镜像的成对神经元。3D 地图覆盖了大约一立方毫米的体积,是整个大脑的百万分之一,包含了大约 57,000 个细胞和 1.5 亿个突触。它包含了 1.4 pb 的庞大数据。这块大脑碎片取自一名 45 岁的女性,当时她正在接受治疗癫痫的手术。它来自大脑皮层,这是大脑中负责学习、解决问题和处理感官信号的部分。样品浸泡在防腐剂中,并用重金属染色,使细胞更容易被看到。研究人员将样本切成大约 5000 片每片只有 34 纳米厚可以用电子显微镜成像。他们建立了 AI 模型,能将显微镜图像拼接在一起,以 3D 方式重建整个样本。来源 , 频道:@kejiqu 群组:@kejiquchat

相关推荐

封面图片

巨型星系爆炸高分辨率地图揭示宇宙污染的动力学

巨型星系爆炸高分辨率地图揭示宇宙污染的动力学 NGC 4383星系正在奇异地演变。气体正以每秒超过 200 公里的速度从它的核心流出。这种神秘的气体喷发有一个独特的原因:恒星形成。资料来源:ESO/A.Watts et al.研究人员 Adam Watts 博士和 Barbara Catinella 教授讨论太空中的发现和气体污染问题。资料来源:ICRAR主要作者、西澳大利亚大学国际射电天文研究中心(ICRAR)的亚当-沃茨(Adam Watts)博士说,外流是银河系中心区域强大恒星爆炸的结果,可能会喷射出大量的氢和更重的元素。喷射出的气体质量相当于 5000 多万个太阳。瓦茨博士说:"由于外流很难被探测到,因此人们对外流的物理特性知之甚少。喷射出的气体中含有相当丰富的重元素,这为我们提供了一个独特的视角,观察流出气体中氢和金属之间复杂的混合过程。在这种特殊情况下,我们检测到了氧、氮、硫和许多其他化学元素"。气体外流对于调节星系形成恒星的速度和持续时间至关重要。这些爆炸喷出的气体会污染星系内恒星之间的空间,甚至星系之间的空间,并可能永远漂浮在星系间介质中。高分辨率地图是利用MAUVE 勘测的数据绘制的,ICRAR 的研究人员 Barbara Catinella 教授和 Luca Cortese 教授是这项研究的共同作者。这次观测使用了位于智利北部的欧洲南方天文台甚大望远镜上的MUSE积分场摄谱仪。安装在智利甚大望远镜(VLT)上的 MUSE 仪器。资料来源:A. Tudorica/ESOCatinella 教授说:"我们设计 MAUVE 的目的是研究气体外流等物理过程如何帮助阻止星系中恒星的形成。NGC 4383 是我们的第一个目标,因为我们怀疑有非常有趣的事情正在发生,但数据超出了我们的预期。我们希望,未来 MAUVE 的观测能以精致的细节揭示气体外流在局部宇宙中的重要性"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜观察

一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜观察 圆环状光束从具有规则重复结构的物体上反弹产生的散射图案。资料来源:Wang 等人,2023 年,"Optica"(光学)。功能最强大的无透镜成像技术被称为"层析成像",其工作原理是用类似激光的光束扫描样品,收集散射光,然后利用计算机算法重建样品图像。虽然层析成像技术可以观察到许多纳米结构,但这种特殊的显微镜在分析具有非常规则的重复图案的样品时会遇到困难。这是因为在扫描周期性样品时,散射光不会发生变化,因此计算机算法会感到困惑,无法重建良好的图像。面对这一挑战,刚刚毕业的博士研究员王斌和内森-布鲁克斯与 JILA 研究员 Margaret Murnane 和 Henry Kapteyn 合作,开发出一种新方法,利用具有特殊涡旋或甜甜圈形状的短波长光来扫描这些重复表面,从而产生更多不同的衍射图样。这使得研究人员能够利用这种新方法捕捉到高保真的图像重建,他们最近在《光学》(Optica)杂志上发表了这篇论文。这项成果还将在《Optica》杂志的《光学与光子学新闻》(Opticsand Photonics News)2023 年光学 年度要闻中重点介绍。这种新的成像方法对于纳米电子学、光子学和超材料的应用尤其具有影响力。Murnane 解释说:"将可见激光束结构化(或改变其形状)为甜甜圈和其他形状的能力彻底改变了可见光超分辨率显微镜技术。现在,我们有了将这些强大功能应用到更短波长的途径,这非常令人兴奋"。雕刻涡形高次谐波束为了在台式装置中产生类似激光的短波长光束,JILA 小组使用了一种称为高次谐波发生(HHG)的过程。当超高速激光脉冲击中一个原子时,高次谐波发生器会将一个电子拉走,然后将其驱回母体原子重新结合。原子在接触时,会将电子的动能转化为极紫外(EUV)光。如果数以百万计的原子都同步发出极紫外光,那么这些光波就会产生类似激光的明亮极紫外光束。为了给重复图案成像,JILA 的研究人员需要找到一种改变 HHG 光束的方法,这样当 EUV 光束在样品上扫描时,散射光就会发生变化。为了达到这一效果,研究人员将 HHG 光束从圆盘状转变为涡旋状或甜甜圈状,这就是所谓的轨道角动量(OAM)光束。这种不同的形状对于实现周期性样品的无透镜成像至关重要。当科学家们用漩涡状的 HHG 光束照射显微镜时(见附图),会产生更复杂的散射图案,这些图案会随着样品的扫描而变化。这些变化编码了样品重复图案的信息,使算法能够提取精确的图像。除了这一令人兴奋的结果之外,与扫描电子显微镜相比,这种新型涡流束无透镜成像技术对脆弱样品的损伤也更小。由于许多软性材料、塑料和生物样本都很脆弱,因此有一种精确而温和的方法来对它们进行成像是非常关键的。此外,涡流束无透镜成像比扫描电子显微镜更能检测出纳米图案中的缺陷,因为扫描电子显微镜往往会融化脆弱的样品。对于为下一代纳米、能源、光子和量子设备制造图案化材料的科学家来说,这一进步能够在不破坏高周期结构的情况下对其进行高分辨率成像。正如 Kapteyn 所说:"未来,这也有可能以高空间分辨率对微妙的活细胞进行成像"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

高分辨率显微镜和超快激光可精确识别半导体中的缺陷

高分辨率显微镜和超快激光可精确识别半导体中的缺陷 密歇根州立大学将红色波浪箭头所示的太赫兹激光光束与扫描隧道显微镜(STM)的尖端结合在一起深色的金字塔形状与蓝色表面所示的样品交换红色电子。资料来源:Eve Ammerman要把更智能、更强大的电子器件塞进日益缩小的设备中,所面临的挑战之一就是开发工具和技术,对组成这些器件的材料进行日益精确的分析。密歇根州立大学的物理学家在这方面迈出了期待已久的一步,他们采用了一种将高分辨率显微镜与超快激光器相结合的方法。《自然-光子学》(Nature Photonics)杂志介绍了这项技术,它使研究人员能够以无与伦比的精度发现半导体中的错位原子。半导体物理学将这些原子称为"缺陷",这听起来有些负面,但它们通常是有意添加到材料中的,对当今和未来设备中半导体的性能至关重要。这项研究的负责人、杰里-考文实验物理学讲座教授泰勒-科克(Tyler Cocker)说:"这对于具有纳米级结构的组件尤其重要。"密歇根州立大学杰里-考恩实验物理学捐赠讲座教授泰勒-考克(左)与博士生斯蒂芬妮-亚当斯(Stefanie Adams)和穆罕默德-哈桑(Mohamed Hassan)在超快太赫兹纳米镜实验室。图片来源:Matt Davenport/密歇根州立大学自然科学学院这包括计算机芯片等,它们通常使用具有纳米级特征的半导体。研究人员正致力于将纳米级结构发挥到极致,设计出只有一个原子厚度的材料。科克说:"这些纳米材料是半导体的未来,当拥有纳米级电子器件时,确保电子能以你想要的方式运动真的很重要"。他还领导着 MSU 物理与天文学系的超快太赫兹纳米光学实验室。缺陷在电子运动中扮演着重要角色,这就是为什么像科克这样的科学家热衷于准确了解缺陷的位置及其行为方式。当科克的同行们得知他的团队的新技术可以让他们轻松获得这些信息时,都感到非常兴奋。维德兰-耶利奇(Vedran Jelic)作为科克研究小组的博士后研究员率先开展了这一项目,他目前在加拿大国家研究理事会工作,是新报告的第一作者。研究小组成员还包括博士生 Stefanie Adams、Eve Ammerman 和 Mohamed Hassan,以及本科生研究员 Kaedon Cleland-Host。科克补充说,只要有合适的设备,这种技术就可以直接实施,他的团队已经将其应用于石墨烯纳米带等原子级薄材料。科克说:"我们有许多开放项目,在这些项目中,我们用更多的材料和更奇特的材料来使用这种技术。我们把它融入到我们所做的一切工作中,并将其作为一种标准技术来使用"。博士生穆罕默德-哈桑(Mohamed Hassan)和斯蒂芬妮-亚当斯(Stefanie Adams)检查光学台,以调整密歇根州立大学团队新技术中使用的激光。图片来源:Matt Davenport/密歇根州立大学自然科学学院目前已经有一些工具,特别是扫描隧道显微镜(STM),可以帮助科学家发现单原子缺陷。与许多人在高中科学课上认识的显微镜不同,STM 不使用透镜和灯泡来放大物体。相反,STM 使用原子般锋利的尖端扫描样品表面,就像唱片机上的触针一样。但 STM 的针尖并不接触样品表面,它只是足够靠近,以便电子在针尖和样品之间跃迁或隧穿。STM 记录了电子跃迁的数量、跃迁的位置以及其他信息,从而提供有关样品的原子尺度信息(因此,科克的实验室将其称为纳米镜,而不是显微镜)。但是,仅凭 STM 数据并不总能清楚地分辨出样品中的缺陷,尤其是砷化镓,这是一种重要的半导体材料,可用于雷达系统、高效太阳能电池和现代电信设备。在最新发表的论文中,Cocker 和他的团队重点研究了有意注入硅缺陷原子的砷化镓样品,以调整电子在半导体中的移动方式。"对于电子来说,硅原子就像一个深坑,"科克说。尽管理论家们对这类缺陷的研究已有数十年之久,但实验学家们直到现在才能够直接探测到这些单原子。科克和他的团队的新技术仍然使用 STM,但研究人员还将激光脉冲直接照射到 STM 的尖端。这些脉冲由太赫兹频率的光波组成,即每秒上下抖动一万亿次。最近,理论家们证明,这与硅原子缺陷在砷化镓样品中来回抖动的频率相同。通过将 STM 和太赫兹光耦合在一起,MSU 团队创造出了一种探针,它对缺陷具有无与伦比的灵敏度。当 STM 针尖接触到砷化镓表面的硅缺陷时,研究小组的测量数据中突然出现了一个强烈的信号。当研究人员将针尖从缺陷处移开一个原子时,信号消失了。科克说:"这就是人们四十多年来一直在寻找的缺陷,我们可以看到它像钟一样敲响。"他继续说:"起初,我们很难相信,因为它太独特了。我们不得不对它进行全方位的测量,以确定它是真实存在的。"然而,他们确信信号是真的以后,就很容易解释了,这要归功于多年来对这一主题的理论研究。尽管科克的实验室处于这一领域的最前沿,但目前世界各地都有研究小组将 STM 与太赫兹光结合起来。除检测缺陷外,还有许多其他材料也可以从这项技术的应用中获益。现在,他的团队已经与社区分享了自己的方法,科克很高兴看到还有其他发现在等待着他。编译自/ScitechDaily ... PC版: 手机版:

封面图片

谷歌地图已经揭开了俄罗斯军事和战略设施的神秘面纱。高分辨率的洲际弹道导弹、指挥所和许多其他设施已被公开。#Russia #Ukr

谷歌地图已经揭开了俄罗斯军事和战略设施的神秘面纱。高分辨率的洲际弹道导弹、指挥所和许多其他设施已被公开。#Russia #Ukraine #OSINT #tips 以下是一些资源: ├├├├├├├├├├├└

封面图片

用人脑活动的潜伏扩散模型进行高分辨率图像重建:

用人脑活动的潜伏扩散模型进行高分辨率图像重建: OpenAI 的 CTO Mira Murati 介绍: 微软将Windows 11的一堆功能加入了AI能力: OpenAI、TikTok 等公司签署 AI 透明协议: 为什么搜索引擎不以更有益的方式整合类似ChatGPT的机器人?: 有任何问题和想法欢迎随时与我交流。

封面图片

使用脑电波活动作为输入运行 Stable Diffusion 进行高分辨率图像重建

使用脑电波活动作为输入运行 Stable Diffusion 进行高分辨率图像重建 摘要 从人脑活动重建视觉体验为研究大脑如何表示世界、解释计算机视觉模型与我们的视觉系统之间关系提供了一种独特的方式。虽然近年来深度生成模型已被应用于此任务,但实现高语义保真度的真实图像重建仍是一个具有挑战性的问题。在本文中,我们提出了一种基于扩散模型(Diffusion Model,DM)的新方法,通过功能性磁共振成像(fMRI)获得的人脑活动来重建图像。我们依赖于一种名为 Stable Diffusion 的潜在空间扩散模型(Latent Diffusion Model,LDM)。该模型降低了扩散模型的计算成本,同时保持了其高生成性能。我们还通过研究LDM的不同组成部分(如潜在向量Z、条件输入C和去噪U-Net的不同元素)与不同的脑功能联系起来,表征了LDM的内部机制。我们展示了我们的方法可以简单地重建高保真度的高分辨率图像,无需进行任何额外的训练和微调复杂的深度学习模型。我们还从神经科学的角度提供了对不同LDM组件的定量解释。总体而言,我们的研究提出了一种有前景的从人脑活动恢复图像的方法,并为理解扩散模型提供了一个新的框架。 (摘要由 ChatGPT 翻译)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人