德国MIRA I太空飞机在具有里程碑意义的"Aerospike"气动火箭试验前坠毁

德国MIRA I太空飞机在具有里程碑意义的"Aerospike"气动火箭试验前坠毁 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN MIRA I 是德国航空航天初创公司北极星 Polaris Raumflugzeuge 的产品,起飞时速度约为 105 英里/小时(169 公里/小时),"起落架转向反应"加上侧风造成了"硬着陆事件",导致这架太空飞机已经无法运行,玻璃纤维机身损坏严重,无法修复。然而,北极星公司并没有试图修复这架原型机,而是选择让 4.25 米(13.9 英尺)长的 MIRA I 退役,继续设计形状相同的 5 米(16 英尺)长的 MIRA II 和 III。它们基本上是 MIRA I 的较大复制品。MIRA I 型在坠毁时受损严重,不值得进行抢救,公司转而研制 MIRA II 和 III 型太空飞机。 这次命运多舛的试验是 MIRA I 首次在实际飞行中点燃 AS-1 LOX(液氧)/煤油线性Aerospike火箭发动机的机会,实际上也是首次在实际飞机上对Aerospike发动机进行适当的飞行试验。是的,北极星公司自主研发的Aerospike火箭发动机。如果这听起来像是科幻小说里的情节,那么它几乎就是科幻小说里的情节。这种火箭发动机由 Rocketdyne 公司于 20 世纪 50 年代首次发明,但从未在实验室外使用过。MIRA I 原型机,图中显示的应该是在计划外拆卸前的视频截图想象Aerospike发动机最简单的方法是将一个传统的钟形火箭发动机喷嘴,或多或少地从内向外翻转,使其内部横截面成为钟形的一半,外面则向大气层开放。传统火箭发动机与Aerospike的比较传统的钟形火箭只能在钟形形状和大小所决定的特定高度以最高效率运行。随着火箭飞行高度的升高,大气压力减小,效率也随之降低,因此需要不同的火箭级,在发射的不同阶段使用不同形状和尺寸的喇叭口。在实验室测试中,Aerospike发动机的设计可以解决这个问题。实际上,"Aerospike"设计是利用火箭周围的大气压力作为喷嘴的外壁。不同高度的气压变化与空气动力效应相结合,改变了发动机周围气压包络的大小和形状,将膨胀气体的炽热善后推回到半球形的横截面上,从而产生更大的压力,加快排气和集中推力。因此,传统火箭在其运行极限内效率较高,而Aerospike设计从海平面一直到太空真空都能保持较高的平均效率,随着压力水平的变化而自我补偿,无需额外的活动部件。正在进行地面测试的航空发动机虽然 MIRA I 没有机会在飞行中证明这项技术,但新的 MIRA II 和 III 将采用相同的推进器布局:四个煤油喷气涡轮机和单个 AS-1 火箭发动机,这些都装备在 MIRA I 上。 主要区别在于机身尺寸;要么大要么小。在封闭环境中试射 AS-1 型低氧/煤油线性气箭火箭发动机使 MIRA 项目与众不同的另一个因素是它的三角翼机身,其设计完全可以重复使用,用于往返轨道的运输。如果一切按计划进行,它将能够作为功能齐全、可重复使用的单级入轨(SSTO)航天飞机运载有效载荷或乘客。北极星公司最终希望建造可重复使用的太空飞机,用于货运和客运在 Polaris Spaceplanes 发布在 LinkedIn 上的新闻稿中,该公司保持了积极的态度:"在 Polaris,我们正以极快的速度推进我们的项目。为了加快进度,我们完全接受有时会出现故障的情况......没有失败就代表没有足够的雄心"。 ... PC版: 手机版:

相关推荐

封面图片

SpaceX发动机试验台在"猛禽"发动机测试后陷入一片火海

SpaceX发动机试验台在"猛禽"发动机测试后陷入一片火海 2022 年早些时候 SpaceX 分享的猛禽发动机测试片段。图片:SpaceX/YouTubeSpaceX/YouTube 大多数火箭公司只为未来特定的火箭生产固定数量的发动机,而 SpaceX 则不同,它是一家硬件资源丰富的公司。该公司在得克萨斯州开发的"星际飞船"火箭已经开始生产钢板、金属罐和火箭发动机。在将火箭发动机安装到猎鹰 9 号、星际飞船超重型或星际飞船第二级之前,都要在 SpaceX 位于得克萨斯州麦格雷戈的设施中进行资格测试。这两种火箭发动机可以通过它们的排气烟雾区分开来。梅林"发动机的排气因煤油而呈橙色,而"猛禽"发动机的排气更清洁,呈蓝色。猛禽发动机是专为星际飞船设计的全新设计,因为它们可以使用甲烷作为燃料。今天,来自德克萨斯州当地媒体 NASASpaceflight 频道的镜头显示,在 SpaceX 位于麦格雷戈的展台进行的猛禽发动机测试似乎最终陷入火海。测试在当地时间下午 4 点 12 分稍后开始,由于点火产生的烟雾挡住了摄像机的视线,测试看起来进行得很正常。点火后 14 秒,烟雾散去,发动机已经关闭,测试似乎已经结束。SpaceX 的"猛禽"发动机在 2023 年的一次长时间试验中测试其万向节然而,在烟云散去之后,火箭发动机喷嘴的底部立即喷出了火苗。在试验过程中,这一区域曾出现过猛禽火箭特有的马赫钻石火焰。然而,这些新的火焰是橙色的,而且在第二次爆炸吞没整个结构之前,它们似乎一直在向上移动。幸运的是,SpaceX 的发射台在爆炸后仍然屹立不倒。然而,事故发生后,白云不断从支架顶部飘出,持续了一分多钟后才散去。在等待安装到星际飞船助推器上的过程中,SpaceX 经常对猛禽发动机进行升级。目前使用的是猛禽 2 发动机。这些发动机的特点是推力更大,设计复杂程度更低。猛禽发动机的设计是为了利用火星上的资源液态甲烷作为燃料。与猎鹰 9 号和猎鹰重型的梅林发动机相比,猛禽发动机的功率也要大得多,SpaceX 在其星际飞船火箭助推器上共使用了 33 个发动机。 ... PC版: 手机版:

封面图片

6月19日 伊朗 对以色列的DD袭击,发射了流星-3弹道DD,其中一枚DD的液体火箭发动机掉落地面,砸中了一辆小鹏G6新能源车。

6月19日 伊朗 对以色列的DD袭击,发射了流星-3弹道DD,其中一枚DD的液体火箭发动机掉落地面,砸中了一辆小鹏G6新能源车。 这辆 小鹏 G6 小汽车被 火箭 发动机直接击中,居然没有起火燃烧,质量杠杠的,相当过硬。

封面图片

航天科技集团可重复使用液氧煤油发动机完成15次重复试验

航天科技集团可重复使用液氧煤油发动机完成15次重复试验 相较于传统的一次性火箭,可重复使用火箭的研制涉及多项关键技术的突破,包括“落得准”、“接得稳”、“用不坏”以及“修得快”。而在这些技术中,可重复使用发动机的研制无疑是重中之重。可重复使用火箭的一大核心功能在于,它不仅能够将航天器送入太空,而且在完成使命后能够安全返回地球,并准备再次投入使用。这一过程的实现分为两个阶段:一方面,火箭在完成任务后需精准地落回地球,期间涉及滑行过程,并在接近地面时再次点火以确保稳定着陆;另一方面,火箭返回地面后,经过简单的修复和维护,便可迅速恢复状态,再次承担发射任务。为了实现可重复使用火箭的这一功能,发动机的研制团队在研发设计、生产制造以及试验试车等多个环节付出了巨大的努力。他们不断攻克技术难题,优化设计方案,提升生产质量,严格把控试验流程,为我国可重复使用火箭发动机的研制进展注入了强大的动力。 ... PC版: 手机版:

封面图片

NASA新里程碑:阿耳特弥斯三号SLS火箭核心级部件搭建完成 准备征服月球

NASA新里程碑:阿耳特弥斯三号SLS火箭核心级部件搭建完成 准备征服月球 美国国家航空航天局(NASA)已经完成了阿耳特弥斯三号(Artemis III)任务的 SLS 火箭核心级的主要结构,包括液氧罐,从而推进了月球探测的目标。资料来源:美国国家航空航天局随着液氧罐完成焊接,将构成 SLS 火箭核心级的所有主要结构都已准备就绪,可用于该机构的阿尔特米斯三号任务。这些硬件将成为计划让宇航员在月球南极附近的月球表面着陆的首个"阿耳特弥斯"任务所用火箭的一部分。1月8日,技术人员在位于新奥尔良的美国宇航局米休德装配设施的垂直装配大楼内完成了51英尺液氧罐结构的焊接工作。美国国家航空航天局(NASA)用于执行阿耳特弥斯III号任务的SLS(太空发射系统)火箭核心级的所有主要结构均已完成。1月8日,技术人员在位于新奥尔良的NASA米休德装配设施的垂直装配大楼内完成了51英尺液氧罐结构(左)的焊接工作。液氢罐(右)于11月14日完成内部清洁。资料来源:美国国家航空航天局/迈克尔-德莫克火箭准备和制造巨型火箭的另一个巨型推进剂箱液氢箱已经是一个完全焊接的结构。NASA和SLS芯级主承包商波音公司目前正在垂直装配大楼区域内另一个名为131号楼低温贮箱热保护系统和底漆应用综合体的单元内为贮箱进行底漆处理。它已于 11 月 14 日完成内部清洁。美国国家航空航天局(NASA)的太空发射系统(Space Launch System)火箭将赋予我们在深空执行大胆任务的能力,我们需要有史以来最大的火箭级。这张信息图表总结了关于 SLS 核心级的所有信息,核心级高 212 英尺,是世界上最强大火箭的支柱。核心级包括液氢贮箱和液氧贮箱,可容纳 733,000 加仑推进剂,为该级的四个 RS-25 发动机提供升空和前往火星所需的动力。资料来源:NASA/MSFC硬件制造是一个多步骤的过程,包括焊接、清洗以及随后的硬件舾装。内部清洗过程类似于淋浴,以确保污染物不会进入舞台复杂的推进和发动机系统。内部清洁完成后,自动机器人工具将底漆涂抹在燃料箱的筒体部分和穹顶外部。涂完底漆后,技术人员将使用基于泡沫的热保护系统,使其免受发射和飞行期间极端温度的影响,同时还能调节内部的超冷推进剂。美国国家航空航天局(NASA)位于新奥尔良的米休德装配厂的技术人员正在同时为 NASA 的阿特米斯二号、三号、四号和五号任务生产 SLS(太空发射系统)火箭的芯级。最近,将为阿特米斯三号任务提供燃料的两个巨型推进剂箱都在该厂的垂直装配大楼内移动。130 英尺高的液氢罐在涂刷底漆前进行了内部清洗,而附近一个制造单元中的液氧罐则被完全焊接成一个结构。资料来源:美国国家航空航天局马歇尔太空飞行中心支持深空探索美国国家航空航天局(NASA)及其合作伙伴正在米丘德同时加工几枚SLS火箭的主要硬件元件,以支持该机构的"阿特米斯"计划,"NASA SLS计划芯级办公室代理经理查德-布莱恩特(Chad Bryant)说。"随着Artemis II核心级接近完工,Artemis III的SLS核心级的主要结构元件将在工厂车间进行生产。火箭的两个巨型推进剂贮箱总共装有超过 733 000 加仑的超低温推进剂。推进剂为四个 RS-25 发动机提供动力,必须保持极冷状态才能保持液态。了解您需要了解的有关 RS-25 发动机的一切信息,这些发动机将帮助 SLS 成为世界上最强大的火箭。资料来源:NASA/MSFC核心级和 RS-25 发动机将产生 200 万磅的推力,帮助美国国家航空航天局(NASA)将猎户座飞船、宇航员和补给品发射到地球轨道之外,并将阿耳特弥斯三号发射到月球表面。SLS 是唯一能一次性将猎户座、宇航员和补给品送往月球的火箭。通过阿尔忒弥斯号,美国国家航空航天局将派遣宇航员包括第一位女性、第一位有色人种和第一位国际伙伴宇航员探索月球,以实现科学发现和经济效益,并为载人火星任务奠定基础。SLS 与猎户座飞船、探索地面系统、先进的宇航服和漫游车、Gateway中继站点和载人着陆系统一起,是美国国家航空航天局深空探索骨干系统的一部分。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

大熊座Draper液体燃料超音速火箭发动机通过热火测试

大熊座Draper液体燃料超音速火箭发动机通过热火测试 高超音速导弹和其他飞行器能够以超过 5 马赫的速度飞行,被认为是改变未来战略和战术军事规划的重要因素之一。如果这类武器能够实用化,特别是在低空飞行时具有机动性,那么它们就能穿透现有的防空系统,以纯粹的动能摧毁目标。其中最棘手的是为这种高超音速飞行器配备实用的发动机。大熊座的德雷珀发动机在研发开始后不到一年就进行了热火测试,其设计不仅可以重新启动和节流,而且易于储存和运输。其中的关键在于,Draper是一种使用液态非低温燃料的火箭发动机。冰冷的低温燃料,如液氢和液氧,能效极高,但也很难储存和处理。另一方面,Draper是一种 4000 磅推力的封闭式催化剂循环发动机,燃料是煤油和过氧化氢。它的工作原理是利用催化剂分解过氧化氢,产生氧气驱动涡轮机,然后在燃烧室中与煤油混合。这意味着Draper可以享受分段燃烧的效率,即推进剂通过多个燃烧室,推进剂可以在室温下轻松储存。这不仅更安全,而且更简单,并消除了推进剂沸腾的危险。据大熊座公司称,Draper发动机不仅具有固体燃料的稳定性,还具有液体发动机的主动节流控制和节流范围,从而具有更强的机动性。这意味着它既可用于高超音速武器,也可用于模拟器,以训练和测试防空能力。Draper计划继续获取空中测试资格。AFRL火箭推进部主任肖恩-菲利普斯(Shawn Phillips)博士说:"也许这个项目最令人印象深刻的方面是在如此短的时间内交付了多功能、可储存的火箭发动机。AFRL和工业界正在接受美国空军和美国海军领导层向我们提出的挑战......提供更快的能力,与工业界建立更紧密的联系,并利用已有的技术提供非对称的进步。值得庆幸的是,这只是我们作为一个团队所做工作的冰山一角。" ... PC版: 手机版:

封面图片

中国首个火箭发动机垂直高空模拟试验台建成

中国首个火箭发动机垂直高空模拟试验台建成 试验台可以实现发动机在千帕级以下真空工作环境中,持续千秒高空模拟试验能力。它具备全程主动引射能力,整体综合指标达到了国际先进水平,并采用先进的超-超单级引射技术,引射能力、效率和可靠性大大提升,设备规模和操作难度显著降低。101所还研制了蒸汽发生器多机并联系统,突破了高可靠性火炬点火技术和挤压、泵压多模态稳定启动技术,系统具备冗余和实时故障诊断功能,具有良好的工作性能和广泛的应用场景;解决了发动机推力自动校验技术,在节省试验准备周期的同时,将推力校验精度提高了一个量级。采用了“数字世界多次迭代,物理世界一次成功”的研制新模式,通过缩比试验验证、数字化仿真、试验工艺流程再造等手段,实现试验系统实时健康诊断、试验流程全数字化管理,确保试验系统可靠,满足型号发动机高空模拟试验要求。这也是101所试验设施建设项目中,建设规模最大、技术难度最高、建设周期最短的工程项目。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人