麻省理工学院的新型核磁共振成像技术揭示大脑深处隐藏的光线

麻省理工学院的新型核磁共振成像技术揭示大脑深处隐藏的光线 现在,麻省理工学院的工程师们想出了一种新方法来检测大脑中这种被称为生物发光的光:他们改造了脑血管,使其表达一种蛋白质,这种蛋白质能使血管在光的作用下扩张。这种扩张可以通过磁共振成像(MRI)观察到,从而使研究人员能够精确定位光源。"我们在神经科学以及其他领域面临的一个众所周知的问题是,在深层组织中使用光学工具非常困难。"麻省理工学院生物工程、脑与认知科学以及核科学与工程学教授艾伦-贾萨诺夫(Alan Jasanoff)说:"我们研究的核心目标之一就是想出一种方法,以相当高的分辨率对深层组织中的生物发光分子进行成像。"贾萨诺夫和他的同事们开发的新技术可以让研究人员比以前更详细地探索大脑的内部运作。贾萨诺夫同时也是麻省理工学院麦戈文大脑研究所的副研究员,他是这项研究的资深作者,研究报告发表在今天(5月10日)的《自然-生物医学工程》上。麻省理工学院前博士后罗伯特-奥伦多夫(Robert Ohlendorf)和李楠是这篇论文的主要作者。一种利用磁共振成像(MRI)检测大脑生物发光的新方法。麻省理工学院开发的这项技术可以让研究人员比以前更详细地探索大脑的内部运作。图为血管在转导了光敏基因后呈现鲜红色。图片来源:研究人员提供生物发光蛋白存在于许多生物体内,包括水母和萤火虫。科学家利用这些蛋白质标记特定的蛋白质或细胞,然后用发光仪检测它们的发光。荧光素酶就是经常用于此目的的蛋白质之一,它有多种形式,能发出不同颜色的光。贾萨诺夫的实验室专门研究利用核磁共振成像技术为大脑成像的新方法,他们希望找到一种方法来检测大脑深处的荧光素酶。为此,他们想出了一种将脑血管转化为光探测器的方法。一种流行的核磁共振成像是通过成像大脑中血流的变化来实现的,因此研究人员设计了血管本身,使其通过扩张对光做出反应。贾萨诺夫说:"血管是功能性核磁共振成像和其他无创成像技术中成像对比度的主要来源,因此我们认为可以通过光敏血管本身,将这些技术成像血管的内在能力转化为成像光的手段。"为了使血管对光敏感,研究人员设计血管表达一种叫做Beggiatoa光活化腺苷酸环化酶(bPAC)的细菌蛋白质。当暴露在光线下时,这种酶会产生一种叫做 cAMP 的分子,从而导致血管扩张。血管扩张时,会改变含氧血红蛋白和脱氧血红蛋白的平衡,而这两种血红蛋白具有不同的磁性。这种磁性的变化可以通过核磁共振成像检测到。BPAC 专门对波长较短的蓝光做出反应,因此它能检测到近距离内产生的光线。研究人员使用病毒载体将 bPAC 的基因专门传递给构成血管的平滑肌细胞。将这种载体注射到小鼠体内后,整个大脑大面积的血管都变得对光敏感。"血管在大脑中形成了一个极为密集的网络。大脑中的每个细胞距离血管都在几十微米之内,"贾萨诺夫说。"我喜欢用这样的方式来描述我们的方法:我们基本上把大脑的血管变成了一台三维照相机"。一旦血管对光敏感,研究人员就植入经过改造的细胞,如果存在一种叫做CZT的底物,这些细胞就会表达荧光素酶。在大鼠身上,研究人员能够通过核磁共振成像检测荧光素酶,从而发现扩张的血管。研究人员随后测试了他们的技术能否检测到大脑自身细胞产生的光,如果这些细胞被设计成能表达荧光素酶的话。他们将一种名为GLuc的荧光素酶基因植入大脑深部区域(即纹状体)的细胞中。将CZT底物注入动物体内后,核磁共振成像会显示出发光的部位。贾萨诺夫说,这项技术被研究人员称为利用血液动力学的生物发光成像技术(BLUsH),可以通过多种方式帮助科学家了解更多有关大脑的信息。其一,通过将荧光素酶的表达与特定基因联系起来,可用于绘制基因表达变化图。这有助于研究人员观察基因表达在胚胎发育和细胞分化过程中或新记忆形成时的变化。荧光素酶还可用于绘制细胞间的解剖连接图,或揭示细胞如何相互交流。研究人员现在计划探索其中的一些应用,并将该技术用于小鼠和其他动物模型。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

以色列军方说,阿什法医院核磁共振成像室就是哈马斯指挥中心,在里面发现武器,有的就藏在核磁共振机后面。核磁共振机运行时会产生巨大的

以色列军方说,阿什法医院核磁共振成像室就是哈马斯指挥中心,在里面发现武器,有的就藏在核磁共振机后面。核磁共振机运行时会产生巨大的磁场,周围的金属物体都会被吸进去。难道是前几天医院停电哈马斯才把那里当指挥中心,还特地留下几把枪让以色列发现?以色列政府真是弱智得可以,还把世人也全当弱智。这些武器应该是以色列士兵以给医院送救援物资的名义夹带进去的吧。

封面图片

麻省理工学院的超声波技术突破让非侵入性脑部治疗进入新时代

麻省理工学院的超声波技术突破让非侵入性脑部治疗进入新时代 ImPULS 设备包含封装在聚合物中的超声波传感器和电极(金)。图片来源:研究人员提供通过植入电极向大脑输送电脉冲的深部脑刺激疗法通常用于治疗帕金森病和其他神经系统疾病。然而,这种治疗方法所使用的电极最终会腐蚀并积累疤痕组织,需要将其移除。现在,麻省理工学院的研究人员开发出了一种替代方法,即使用超声波而不是电力来进行深部脑刺激,由一根头发丝粗细的纤维传递。在对小鼠的研究中,他们发现这种刺激可以触发神经元释放多巴胺,而多巴胺通常是帕金森病患者大脑中的一部分。"通过使用超声波技术,我们可以创造一种新的方式来刺激大脑深部的神经元发射,"麻省理工学院媒体实验室副教授、这项新研究的资深作者卡南-达格德维仁(Canan Dagdeviren)说。"这种装置比头发丝还要细,因此对组织的损伤可以忽略不计,而且我们很容易在大脑深部导航这种装置。"除了提供一种更安全的深部脑刺激方法外,这种方法还可能成为研究人员了解大脑工作原理的重要工具。麻省理工学院研究生杰森-侯(Jason Hou)和麻省理工学院博士后奥斯曼-高尼-纳耶姆(Md Osman Goni Nayeem)是这篇论文的主要作者,其他合作者来自麻省理工学院麦戈文脑研究所、波士顿大学和加州理工学院。该研究报告于6月4日发表在《自然通讯》(Nature Communications)杂志上。达格德维仁的实验室以前曾开发过可穿戴超声波设备,可用于通过皮肤给药或对各种器官进行诊断成像。然而,超声波无法通过附着在头部或头骨上的设备深入大脑。"如果我们想进入大脑深层,那么它就不能再仅仅是可穿戴或可附着的了。它必须是可植入的,"Dagdeviren 说。"我们精心定制设备,使其具有微创性,避开大脑深部的主要血管"。美国食品和药物管理局已批准使用电脉冲深部脑刺激治疗帕金森病症状。这种方法使用毫米厚的电极来激活大脑黑质区域中产生多巴胺的细胞。然而,一旦植入大脑,设备最终会开始腐蚀,植入物周围形成的疤痕组织会干扰电脉冲。新方法通过一根头发丝粗细的纤维传递超声波。图片来源:研究人员提供麻省理工学院的研究小组开始研究能否用超声波取代电刺激,从而克服其中的一些缺点。大多数神经元都有能对机械刺激(如声波的振动)做出反应的离子通道,因此超声波可用来激发这些细胞的活动。然而,现有的通过头骨向大脑输送超声波的技术无法高精度地深入大脑,因为头骨本身会干扰超声波,导致刺激偏离目标。Nayeem说:"要精确调节神经元,我们必须深入到更深的区域,这促使我们设计出一种新型超声植入物,它能产生局部超声场。为了安全地到达大脑深部区域,研究人员设计了一种由柔性聚合物制成的细如发丝的纤维。纤维的顶端包含一个鼓状超声换能器,换能器上有一层振动膜。这层薄膜包裹着一层薄薄的压电薄膜,当这层薄膜被微小的电压驱动时,就会产生超声波,附近的细胞就能检测到这些超声波。"Hou说:"它对组织安全,没有裸露的电极表面,而且功耗很低,这对转化为病人使用是个好兆头。"在对小鼠进行的试验中,研究人员发现,这种被称为ImPULS(可植入压电超声刺激器)的超声装置可以激发海马神经元的活动。然后,他们将这种纤维植入产生多巴胺的黑质,结果表明,这种纤维可以刺激背侧纹状体的神经元产生多巴胺。"刺激大脑一直是恢复大脑健康最有效但最不为人所知的方法之一。ImPULS让我们有能力以精确的时空分辨率刺激脑细胞,而且不会像其他方法那样产生损伤或炎症。"波士顿大学心理与脑科学助理教授、波士顿大学系统神经科学中心(Center for Systems Neuroscience)教员史蒂夫-拉米雷斯(Steve Ramirez)也是这项研究的作者之一。在新系统中,传感器(银色)由导线(金色)供电,导线可提供电刺激。图片来源:研究人员提供该装置的所有组件都具有生物兼容性,包括压电层,它是由一种名为铌酸钠钾(或 KNN)的新型陶瓷制成的。目前的植入物由外部电源供电,但研究人员设想未来的植入物可以由小型植入式电池和电子装置供电。研究人员开发了一种微加工工艺,使他们能够轻松改变纤维的长度和厚度,以及压电换能器产生的声波频率。这样就能为不同的大脑区域定制设备。Dagdeviren说:"我们不能说这种装置会对大脑的每个区域产生同样的效果,但我们可以非常自信地说,这种技术是可扩展的,而且不仅适用于小鼠。我们还可以把它做得更大,以便最终用于人类。"研究人员现在计划研究超声波刺激会如何影响大脑的不同区域,以及这种装置在植入一年后能否保持功能。他们还对加入微流体通道的可能性很感兴趣,这样就能让装置在传递超声波的同时传递药物。研究人员说,除了有望成为帕金森病或其他疾病的潜在治疗手段外,这种超声波设备还可以成为帮助研究人员进一步了解大脑的宝贵工具。"我们的目标是将其作为一种研究工具提供给神经科学界,因为我们认为我们没有足够的有效工具来了解大脑,"Dagdeviren 说。"作为设备工程师,我们正在努力提供新的工具,以便我们能够更多地了解大脑的不同区域。"编译自/scitechdaily ... PC版: 手机版:

封面图片

世界上最强大的核磁共振成像仪首次捕捉到令人惊叹的大脑扫描图像

世界上最强大的核磁共振成像仪首次捕捉到令人惊叹的大脑扫描图像 用功率为 11.7 特斯拉的新型 Iseult 核磁共振成像仪拍摄的人脑图像,显示了可能达到的详细程度这种额外功率的主要好处是可以更快地拍摄出分辨率更高的大脑图像。在短短四分钟内,Iseult 就能捕捉到水平方向最小 0.2 毫米(0.008 英寸)的脑组织图像,"切片"厚度仅为 1 毫米(0.04 英寸)。这相当于一次拍摄几千个神经元。传统的核磁共振成像仪要拍摄出这种分辨率的图像,病人需要完全静止地躺上两个多小时,稍有移动就会模糊不清。这当然是不可行的。90 厘米(35.4 英寸)宽的"洞"让病人可以把头伸进去,这也提高了舒适度。与通常的 60 至 70 厘米(23.6 至 27.6 英寸)相比,这似乎不是一个很大的增长,但额外的头部空间有助于减少幽闭恐惧症。使用新型 Iseult 核磁共振成像仪在不同功率级别(3 T、7 T 和 11.7 T)下拍摄的人脑图像对比。几年前,Iseult 曾在南瓜上进行过测试,但现在它对 20 名健康志愿者的大脑进行了首次扫描。这些令人惊叹的图像展示了新型核磁共振成像技术的潜力,它可以揭示以前无法获得的有关大脑如何工作的信息,包括大脑如何编码心理表征,以及哪些神经元特征与意识本身有关。除了这些存在的问题,Iseult 还能帮助科学家了解、诊断和治疗阿尔茨海默氏症和帕金森氏症等神经退行性疾病。它应该能够检测到常规核磁共振扫描通常无法看到的化学特征,包括葡萄糖和谷氨酸等分子,这些分子参与大脑新陈代谢,其紊乱可能与胶质瘤和神经变性等疾病有关。它还能追踪锂在大脑中的分布,锂可用于治疗躁郁症。由于其复杂性,Iseult 比其他核磁共振成像仪大得多。它长、宽各 5 米(16.4 英尺),重 132 吨,由 182 千米(113 英里)长的超导导线组成。为了将磁体冷却到所需的-271.35 °C(-456.43 °F),需要大约 7500 升(1981 加仑)液氦。这种尺寸、复杂性和毫无疑问的成本可能会限制伊瑟尔磁共振成像仪的使用范围,但希望它能带来足够的好处,尽快在一些特殊设施中投入使用。该团队在下面的视频中讨论了这项技术。 ... PC版: 手机版:

封面图片

Science:新的成像方法揭示了氧气在大脑中的旅程

Science:新的成像方法揭示了氧气在大脑中的旅程 发表在《科学》(Science)杂志上的一项新的生物发光成像技术,创造了非常详细、视觉上引人注目的小鼠大脑中氧气运动的图像。这种方法很容易被其他实验室复制,它将使研究人员能够更精确地研究缺氧的形式,比如中风或心脏病发作时大脑部分缺氧。这项研究已经深入了解了为什么久坐不动的生活方式会增加患阿尔茨海默病等疾病的风险。“这项研究表明,我们可以连续监测大脑大范围内氧浓度的变化,”罗切斯特大学和哥本哈根大学转化神经医学中心的联合主任Maiken Nedergaard说。Maiken Nedergaard说:“这为我们提供了一个更详细的图像,实时了解大脑中发生了什么,使我们能够识别以前未被发现的暂时缺氧区域,这反映了血液流动的变化,可能引发神经功能障碍。”萤火虫和偶然的科学这种新方法使用了发光蛋白,这是在萤火虫中发现的生物发光蛋白的化学表亲。这些已被用于癌症研究的蛋白质,利用一种病毒向细胞传递指令,以酶的形式产生发光蛋白质。当这种酶遇到它的底物furimazine时,化学反应就会产生光。像许多重要的科学发现一样,利用这个过程来成像大脑中的氧气是偶然发现的。哥本哈根大学转化神经科学中心的助理教授Felix Beinlich最初打算用发光蛋白来测量大脑中的钙活性。很明显,蛋白质生产过程中出现了错误,导致了长达数月的研究延迟。当Felix Beinlich等待制造商的新一批产品时,他决定继续进行实验,以测试和优化监测系统。这种病毒被用来向星形胶质细胞传递产生酶的指令,星形胶质细胞是大脑中普遍存在的支持细胞,维持神经元的健康和信号功能,这种底物被直接注射到大脑中。这些记录揭示了生物发光强度波动的活动,研究人员怀疑这反映了氧气的存在和浓度,后来证实了这一点。Felix Beinlich说:“在这种情况下,化学反应依赖于氧气,所以当有酶、底物和氧气时,系统就开始发光。”虽然现有的氧气监测技术只能提供大脑一小块区域的信息,但研究人员可以实时观察到小鼠的整个大脑皮层。生物发光的强度与氧气的浓度相对应,研究人员通过改变动物呼吸的空气中的氧气量来证明这一点。光强度的变化也与感觉处理相对应。例如,当一股空气刺激老鼠的胡须时,研究人员可以看到大脑相应的感觉区域亮了起来。“缺氧口袋”可能预示着老年痴呆症的风险大脑在没有氧气的情况下无法存活很长时间,中风或心脏病发作后迅速造成的神经损伤就证明了这一点。但是,当大脑的一小部分短暂缺氧时会发生什么呢?直到Nedergaard实验室的研究小组开始仔细研究新的录音,这个问题才被研究人员提出。在监测小鼠的过程中,研究人员观察到,大脑的特定微小区域会间歇性地变暗,有时会持续几秒钟,这意味着氧气供应被切断。氧气通过一个由动脉和毛细血管组成的巨大网络在大脑中循环,毛细血管渗透到脑组织中。??通过一系列实验,研究人员能够确定氧气被拒绝是由于毛细血管阻塞,当白细胞暂时阻塞微血管并阻止携带氧气的红细胞通过时,就会发生这种情况。研究人员将这些区域命名为“缺氧口袋”,与小鼠活动时相比,它们在静息状态下的大脑中更为普遍。毛细血管停滞被认为随着年龄的增长而增加,并在阿尔茨海默病模型中观察到。Maiken Nedergaard说:“我们可以研究一系列与大脑缺氧相关的疾病,包括阿尔茨海默氏症、血管性痴呆和长期COVID,以及久坐不动的生活方式、衰老、高血压和其他因素如何导致这些疾病。”“它还提供了一种工具来测试不同的药物和运动类型,这些药物和运动可以改善血管健康,减缓痴呆症的发展。” ... PC版: 手机版:

封面图片

麻省理工学院揭幕"质子之舞": 开拓能源新时代

麻省理工学院揭幕"质子之舞": 开拓能源新时代 麻省理工学院的化学家们首次详细描绘了这些质子耦合电子转移是如何在电极表面发生的。他们的研究成果可以帮助研究人员设计出更高效的燃料电池、电池或其他能源技术。麻省理工学院化学和化学工程教授、该研究的资深作者 Yogesh Surendranath 说:"我们在这篇论文中取得的进展是研究和理解了这些电子和质子如何在表面部位耦合的性质,这与催化反应有关,而催化反应在能量转换装置或催化反应中非常重要。"在他们的研究成果中,研究人员能够准确追踪电极周围电解质溶液 pH 值的变化如何影响电极内质子运动和电子流动的速度。麻省理工学院研究生诺亚-刘易斯(Noah Lewis)是这篇论文的第一作者,论文最近发表在《自然-化学》上。麻省理工学院前博士后 Ryan Bisbey、麻省理工学院研究生 Karl Westendorff 和耶鲁大学研究科学家 Alexander Soudackov 也是这篇论文的作者。质子传递质子耦合电子转移是指一种分子(通常是水或酸)将质子转移到另一种分子或电极表面,从而刺激质子接受者也接受一个电子。这种反应已被广泛应用于能源领域。"这些质子耦合电子转移反应无处不在。它们通常是催化机制中的关键步骤,对于制氢或燃料电池催化等能量转换过程尤为重要,"Surendranath 说。在制氢电解槽中,这种方法用于从水中去除质子,并在质子上添加电子以形成氢气。在燃料电池中,当质子和电子从氢气中移出并加入氧气形成水时,就会产生电能。施加电势会导致质子从氢离子(右图)转移到电极表面。利用具有分子定义质子结合位点的电极,麻省理工学院的研究人员为这些界面质子耦合电子转移反应建立了一个通用模型。图片来源:研究人员提供质子耦合电子转移在许多其他类型的化学反应中都很常见,例如二氧化碳还原(通过添加电子和质子将二氧化碳转化为化学燃料)。当质子接受体是分子时,科学家们可以精确控制每个分子的结构,并观察电子和质子如何在分子间传递,因此他们已经对这些反应的发生过程有了很多了解。然而,当质子耦合电子转移发生在电极表面时,这一过程就更难研究了,因为电极表面通常非常异质,质子有可能与许多不同的位点结合。为了克服这一障碍,麻省理工学院的研究小组开发出一种设计电极表面的方法,使他们能够更精确地控制电极表面的组成。他们的电极由石墨烯薄片组成,表面附着有机含环化合物。每个有机分子的末端都有一个带负电荷的氧离子,它可以接受周围溶液中的质子,从而使电子从电路流入石墨表面。Surendranath 说:"我们可以创造出一种电极,它不是由各种各样的位点组成,而是由单一类型的非常明确的位点组成的统一阵列,每个位点都能以相同的亲和力结合质子。由于我们拥有这些非常明确的位点,这让我们能够真正揭示这些过程的动力学"。利用这个系统,研究人员能够测量流向电极的电流,从而计算出平衡状态下质子向表面氧离子转移的速率质子向表面捐赠的速率和质子从表面转移回溶液的速率相等的状态。他们发现,周围溶液的 pH 值对这一速率有显著影响: 最高速率出现在 pH 值的两端酸性最强的 pH 值为 0,碱性最强的 pH 值为 14。为了解释这些结果,研究人员根据电极可能发生的两种反应建立了一个模型。在第一种反应中,强酸性溶液中高浓度的氢离子(H3O+)将质子传递给表面的氧离子,生成水。在第二种情况下,水将质子传递给表面氧离子,生成氢氧根离子(OH-),氢氧根离子在强碱性溶液中浓度较高。不过,pH 值为 0 时的速度比 pH 值为 14 时的速度快四倍,部分原因是氢离子释放质子的速度比水快。需要重新考虑的反应研究人员还惊奇地发现,这两个反应的速率并不是在中性 pH 值为 7(氢铵和氢氧根的浓度相等)时相等,而是在 pH 值为 10(氢氧根离子的浓度是氢铵的 100 万倍)时相等。该模型表明,这是因为涉及氢𬭩或水提供质子的前向反应比涉及水或氢氧化物去除质子的后向反应对总速率的贡献更大。研究人员说,关于这些反应如何在电极表面发生的现有模型假定,前向反应和后向反应对总速率的贡献相同,因此新发现表明,可能需要重新考虑这些模型。Surendranath说:"这是默认的假设,即正向和逆向反应对反应速率的贡献相同。我们的发现确实令人大开眼界,因为这意味着人们用来分析从燃料电池催化到氢进化等一切问题的假设可能是我们需要重新审视的。"研究人员目前正在利用他们的实验装置研究向电极周围的电解质溶液中添加不同类型的离子会如何加快或减慢质子耦合电子流的速度。刘易斯说:"通过我们的系统,我们知道我们的位点是恒定的,不会相互影响,因此我们可以读出溶液的变化对表面反应的影响。"编译自//scitechdaily ... PC版: 手机版:

封面图片

麻省理工学院的AI突破:对抗MRSA的新型抗生素先锋

麻省理工学院的AI突破:对抗MRSA的新型抗生素先锋 利用一种被称为深度学习的人工智能,麻省理工学院的研究人员发现了一类化合物,这种化合物可以杀死一种耐药细菌,这种细菌每年导致美国一万多人死亡。在最近发表于《自然》(Nature)的一项研究中,研究人员发现这些化合物可以杀死在实验室培养皿中生长的耐甲氧西林金黄色葡萄球菌(MRSA),以及在两种 MRSA 感染小鼠模型中生长的耐甲氧西林金黄色葡萄球菌。这些化合物对人体细胞的毒性也很低,因此特别适合作为候选药物。这项新研究的一个关键创新点是,研究人员还弄清了深度学习模型在预测抗生素效力时使用了哪些信息。这些知识可以帮助研究人员设计出更多的药物,它们可能比模型识别出的药物效果更好。"我们的洞察力在于,我们可以看到模型学习到了什么,从而预测出某些分子会成为很好的抗生素。"麻省理工学院医学工程与科学研究所(IMES)和生物工程系的特米尔医学工程与科学教授詹姆斯-柯林斯(James Collins)说:"我们的工作提供了一个框架,从化学结构的角度来看,它既省时、省资源,又具有机理上的洞察力。"这项研究是麻省理工学院"抗生素-人工智能项目"(Antibiotics-AI Project)的一部分,该项目由柯林斯领导。该项目是麻省理工学院抗生素-人工智能项目的一部分。该项目由柯林斯领导,其任务是在七年内发现针对七种致命细菌的新型抗生素。用人工智能应对 MRSA在美国,每年有超过 8 万人感染 MRSA,它通常会引起皮肤感染或肺炎。严重病例可导致败血症,这是一种可能致命的血液感染。在过去几年里,柯林斯和他在麻省理工学院阿卜杜勒-拉蒂夫-贾米尔健康机器学习诊所(Jameel Clinic)的同事们开始利用深度学习尝试寻找新的抗生素。他们的工作已经产生了针对鲍曼不动杆菌(一种常见于医院的细菌)和许多其他耐药细菌的潜在药物。这些化合物是利用深度学习模型确定的,该模型可以学习识别与抗菌活性相关的化学结构。然后,这些模型会筛选数百万种其他化合物,预测哪些化合物可能具有较强的抗菌活性。事实证明,这类搜索富有成效,但这种方法的一个局限是,模型是"黑盒子",也就是说,无法知道模型是根据什么特征进行预测的。如果科学家们知道模型是如何做出预测的,他们就能更容易地找出或设计出更多的抗生素。黄说:"我们在这项研究中要做的就是打开黑盒子。这些模型由大量模拟神经连接的计算组成,没有人真正知道这底下发生了什么"。提高人工智能的预测准确性首先,研究人员使用大幅扩展的数据集训练了一个深度学习模型。他们通过测试约 3.9 万种化合物对 MRSA 的抗生素活性生成了这些训练数据,然后将这些数据以及化合物的化学结构信息输入模型。Wong说:"基本上可以将任何分子表示为化学结构,还可以告诉模型该化学结构是否具有抗菌性。这个模型是在许多这样的例子中训练出来的。如果你给它任何新的分子、新的原子和化学键排列,它就能告诉你该化合物被预测为抗菌的概率。"为了弄清该模型是如何做出预测的,研究人员采用了一种被称为蒙特卡洛树搜索的算法,这种算法已被用来帮助使其他深度学习模型(如AlphaGo)更易于解释。这种搜索算法不仅能让模型对每种分子的抗菌活性做出估计,还能预测该分子的哪些亚结构可能会产生这种活性。人工智能驱动的药物发现过程为了进一步缩小候选药物的范围,研究人员又训练了三个深度学习模型,以预测化合物是否对三种不同类型的人体细胞有毒。通过将这些信息与抗菌活性预测相结合,研究人员发现了既能杀死微生物,又能对人体产生最小不良影响的化合物。利用这组模型,研究人员筛选了大约 1200 万种化合物,所有这些化合物都可以在市场上买到。根据分子中的化学子结构,模型从这些化合物中识别出了五种不同类别的化合物,这些化合物预计对 MRSA 具有活性。有希望的成果和未来方向研究人员购买了大约 280 种化合物,并对它们进行了针对在实验室培养皿中生长的 MRSA 的测试,从而确定了同一类中的两种似乎非常有希望成为候选抗生素的化合物。在两种小鼠模型(一种是 MRSA 皮肤感染模型,另一种是 MRSA 全身感染模型)的测试中,每种化合物都能将 MRSA 的数量减少 10 倍。实验发现,这些化合物似乎通过破坏细菌在细胞膜上维持电化学梯度的能力来杀死细菌。许多关键的细胞功能都需要这种梯度,包括产生 ATP(细胞用来储存能量的分子)的能力。柯林斯实验室在 2020 年发现的一种候选抗生素Halicin似乎也是通过类似的机制发挥作用的,但它对革兰氏阴性细菌(细胞壁较薄的细菌)具有特异性。MRSA 是一种革兰氏阳性细菌,细胞壁较厚。Wong说:"我们有相当有力的证据表明,这种新的结构类药物通过选择性地消散细菌中的质子动力,对革兰氏阳性病原体具有活性。这些分子选择性地攻击细菌细胞膜,而不会对人类细胞膜造成实质性损害。我们大幅增强的深度学习方法使我们能够预测这一类新结构的抗生素,并发现它对人类细胞没有毒性。"研究人员与Phare Bio 分享了他们的研究成果,Phare Bio 是柯林斯等人创办的非营利组织,也是抗生素人工智能项目的一部分。该非营利组织目前计划对这些化合物的化学特性和潜在临床用途进行更详细的分析。与此同时,柯林斯的实验室正在根据新研究的结果设计更多的候选药物,并利用这些模型寻找能杀死其他类型细菌的化合物。Wong说:"我们已经在利用基于化学子结构的类似方法来重新设计化合物,当然,我们也可以随时采用这种方法来发现针对不同病原体的新型抗生素。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人