离子“非牛顿流体”:科学家在电池技术方面有了惊人发现

离子“非牛顿流体”:科学家在电池技术方面有了惊人发现 近距离观察,电池电极之间的离子流实际上是一系列原子级的无规律跳跃。在 SLAC 国家加速器实验室的激光实验室中进行的实验表明,当受到电压冲击时,大多数离子会短暂地向后跳回它们之前的位置,然后再继续它们通常的无规律旅行这是它们在某种意义上记得自己刚刚去过的地方的第一个迹象。图片来源:Greg Stewart/SLAC 国家加速器实验室加速器实验室现在,在首次同类研究中,研究人员用激光脉冲照射跳动的离子,给它们施加电压。出乎他们意料的是,大多数离子短暂地逆转了方向,回到了它们之前的位置,然后又开始了它们通常的、更加随机的旅行。这是第一个迹象表明,离子在某种意义上记得它们刚刚去过的地方。来自美国能源部SLAC国家加速器实验室、斯坦福大学、牛津大学和纽卡斯尔大学的研究小组在1月24日出版的《自然》杂志上介绍了他们的发现。离子“非牛顿流体”牛津大学博士后研究员 Andrey D. Poletayev 说:"你可以把离子想象成玉米淀粉和水的混合物。这就是我们经常听到的非牛顿流体,如果我们轻轻推动这种玉米淀粉混合物,它就会像液体一样流动;但如果我们猛击它,它就会变成固体。电池中的离子就像电子玉米淀粉。它们通过向后移动来抵御激光的猛烈震动。"正如波列塔耶夫所说,离子的"模糊记忆"仅持续几十亿分之一秒。但知道它的存在将有助于科学家首次预测行进中的离子下一步会做什么这是发现和开发新材料的一个重要考虑因素。由 SLAC 首席科学家马蒂亚斯-霍夫曼(Matthias C. Hoffmann)制造的激光仪器,用于在固态电池电解质中用电压冲击震荡离子的实验。令研究人员惊讶的是,大多数离子的反应是扭转方向,跳到它们之前的位置,然后再回到它们通常的不规则路径上这是第一个迹象,表明它们在某种意义上记得自己曾经去过的地方。图片来源:Andrey D. Poletayev/牛津大学专为速度设计的电解液在 SLAC 激光实验室进行的实验中,研究人员使用了一种固体电解质的透明薄晶体,这种电解质属于一种被称为β-铝的材料。这些材料是迄今发现的第一批高导电性电解质。它们含有微小的通道,跳跃离子可以在其中快速移动,而且具有比液态电解质更安全的优点。β-铝可用于固态电池、钠硫电池和电化学电池。当离子在β-氧化铝通道中跳跃时,研究人员用长度仅为万亿分之一秒的激光脉冲照射它们,然后测量从电解质中返回的光线。通过改变激光脉冲和测量之间的时间,他们能够精确地确定离子的速度和偏好方向在激光冲击后几兆分之一秒内的变化情况。怪异和不寻常领导这项研究的斯坦福材料与能源科学研究所(SIMES)研究员、SLAC 和斯坦福大学教授亚伦-林登伯格(Aaron Lindenberg)说:"离子跳跃过程中出现了多种奇怪而不寻常的现象。当我们施加一种使电解质摇晃的力时,离子不会像大多数材料那样立即做出反应。离子可能会在那里坐一会儿,突然跳起来,然后又在那里坐一会儿。你可能需要等待一段时间,然后突然发生巨大的位移。因此,这个过程中存在着随机因素,这就给这些实验带来了困难。"研究人员说,在此之前,人们一直认为离子的行进方式是典型的"随机行走":它们推搡、碰撞、跌跌撞撞,就像喝醉酒的人踉踉跄跄地走在人行道上,但最终会以一种在旁观者看来是故意的方式到达某个目的地。或者想想臭鼬向满屋子的人喷出恶臭的喷雾;喷雾中的分子随机地打闹、碰撞,但很快就会到达你的鼻子。波列塔耶夫说:"当谈到跳跃离子时,在原子尺度上这幅图是错误的,但这并不是得出这一结论的人的错。只是长期以来,研究人员一直在用宏观工具研究离子传输,他们无法观察到我们在这项研究中看到的现象。"他说,这里的原子尺度发现"将有助于弥合我们可以在计算机中建模的原子运动与材料宏观性能之间的差距,而这种差距使我们的研究变得如此复杂"。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家们开发出了一种用于锂离子电池的超低浓度电解质

科学家们开发出了一种用于锂离子电池的超低浓度电解质 锂离子电池(LIB)为智能手机和平板电脑提供电力,驱动电动汽车,并在发电厂储存电力。大多数锂离子电池的主要成分是锂钴氧化物(LCO)阴极、石墨阳极以及为阴极和阳极的解耦反应提供移动离子的液态电解质。这些电解质决定了电极上形成的相间层的性质,从而影响电池循环性能等特性。然而,商用电解质大多仍基于 30 多年前配制的系统:1.0 至 1.2 摩尔/升六氟磷酸锂(LiPF6)在羧酸酯("碳酸溶剂")中的溶液。在过去的十年中,高浓度电解质(> 3 mol/L)得到了发展,它们有利于形成坚固的无机主导相间层,从而提高了电池性能。然而,这些电解质粘度高、润湿能力差、导电性差。由于需要大量的锂盐,这些电解质的价格也非常昂贵,而这往往是影响可行性的一个关键参数。为了降低成本,超低浓度电解质(< 0.3 mol/L)的研究也已开始。这些电解质的缺点是,电池电池分解的溶剂多于少量的盐阴离子,从而导致有机物占主导地位,相间层的稳定性较差。由宁波大学(中国)和波多黎各大学里奥皮德拉斯校区(美国)的袁金良、夏岚和吴先勇领导的研究小组现已开发出一种超低浓度电解质,可能适用于锂离子电池的实际应用:LiDFOB/EC-DMC。LiDFOB(二氟草酸硼酸锂)是一种常见的添加剂,价格比LiPF6 便宜得多。EC-DMC (碳酸乙酯/碳酸二甲酯)是一种商用碳酸酯溶剂。这种电解液的含盐量低至 2 重量百分比(0.16 摩尔/升),但离子电导率却高达 4.6 mS/cm,足以使电池正常工作。此外,DFOB- 阴离子的特性还能在 LCO 和石墨电极上形成以无机物为主的坚固相间层,从而在半电池和全电池中实现出色的循环稳定性。目前使用的LiPF6会在潮湿环境中分解,释放出剧毒和腐蚀性的氟化氢气体(HF),而 LiDFOB 则对水和空气稳定。使用 LiDFOB 的 LIB 不需要严格的干燥室条件,而可以在环境条件下制造,这又是一个节约成本的特点。此外,回收问题也会大大减少,从而提高可持续性。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现新型锂离子导体 可用于强化电动汽车电池

科学家发现新型锂离子导体 可用于强化电动汽车电池 利物浦大学的一个团队开发出了一种新型固态锂离子导体,可以取代电池中的液态电解质,从而提高安全性和效率。图片表示锂离子(蓝色)在结构上移动。资料来源:利物浦大学这种新材料由无毒的地球富集元素组成,具有足够高的锂离子传导性,可以取代目前锂离子电池技术中的液态电解质,提高安全性和能量容量。该大学的跨学科研究团队采用变革性科学方法来设计这种材料,他们在实验室中合成了这种材料,确定了它的结构(原子在空间中的排列),并在电池中进行了演示。这种新材料是极少数能达到足以取代液态电解质的高锂离子电导率的固体材料之一,并且由于其结构而能以一种新的方式工作。这一发现是通过合作计算和实验工作流程实现的,该流程利用人工智能和基于物理学的计算来支持大学化学专家的决策。这种新材料为化学优化提供了一个平台,以进一步提高材料本身的性能,并根据研究提供的新认识来确定其他材料。利物浦大学化学系马特-罗森斯基(Matt Rosseinsky)教授说:"这项研究展示了一种新型功能材料的设计和发现。这种材料的结构改变了人们以往对高性能固态电解质的理解。具体来说,具有多种不同移动离子环境的固体可以表现出很好的性能,而不仅仅是离子环境范围很窄的少数固体。这极大地开拓了进一步发现的化学空间。"最近的报道和媒体报道预示着人工智能工具已被用于寻找潜在的新材料。在这种情况下,人工智能工具是独立工作的,因此很可能会以各种方式重现它们接受过的训练,生成的材料可能与已知材料非常相似。"这篇发现研究论文表明,人工智能和由专家调配的计算机可以解决现实世界材料发现的复杂问题,在这个问题上,我们寻求的是成分和结构上有意义的差异,其对性能的影响要根据理解来评估,我们的颠覆性设计方法为发现这些以及其他依赖离子在固体中快速运动的高性能材料提供了一条新的途径"。这项研究由利物浦大学化学系、材料创新工厂、利弗胡尔姆功能材料设计研究中心、史蒂芬森可再生能源研究所、阿尔伯特-克鲁中心和工程学院的研究人员共同努力完成。并得到了工程与物理科学研究理事会(EPSRC)、勒弗胡尔姆信托基金会(Leverhulme Trust)和法拉第研究所(Faraday Institution)的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家们发现了一种稳定的高导电性锂离子导体

科学家们发现了一种稳定的高导电性锂离子导体 虽然硫化物固体电解质具有导电性,但它们会与水分反应形成有毒的二硫化氢。 因此,需要既导电又在空气中稳定的非硫化物固体电解质来制造安全、高性能和快速充电的固态锂离子电池。在最近发表在《材料化学》杂志上的一项研究中,由东京理科大学 Kenjiro Fujimoto 教授、Akihisa Aimi 教授和 DENSO CORPORATION 的 Shuhei Yoshida 博士领导的研究小组发现了一种稳定且高导电性的锂离子导体 烧绿石型氟氧化物的形式。藤本教授表示:“制造全固态锂离子二次电池是许多电池研究人员长期以来的梦想。 我们发现了一种氧化物固体电解质,它是全固态锂离子电池的关键组成部分,它兼具高能量密度和安全性。 除了在空气中稳定之外,该材料还表现出比之前报道的氧化物固体电解质更高的离子电导率。”本工作研究的烧绿石型氟氧化物可表示为Li2-xLa(1+x)/3M2O6F (M = Nb, Ta)。 使用各种技术对其进行结构和成分分析,包括 X 射线衍射、Rietveld 分析、电感耦合等离子体发射光谱法和选区电子衍射。 具体来说,开发了Li1.25La0.58Nb2O6F,在室温下表现出7.0 mS cm⁻¹的体离子电导率和3.9 mS cm⁻¹ 的总离子电导率。 人们发现它比已知的氧化物固体电解质的锂离子电导率更高。 该材料的离子传导活化能极低,并且该材料在低温下的离子电导率是已知固体电解质(包括硫化物基材料)中最高的之一。确切地说,即使在 –10°C 的温度下,新材料在室温下也具有与传统氧化物基固体电解质相同的电导率。 此外,由于在 100 °C 以上的电导率也已得到验证,因此该固体电解质的工作范围为 –10 °C 至 100 °C。 传统的锂离子电池无法在低于冰点的温度下使用。 因此,常用手机锂离子电池的工作条件为0℃至45℃。研究了该材料中的锂离子传导机制。 烧绿石型结构的传导路径覆盖了位于 MO6 八面体形成的隧道中的 F 离子。 传导机制是锂离子的顺序运动,同时改变与氟离子的键。 Li离子总是穿过亚稳态位置移动到最近的Li位置。 与 F 离子结合的固定 La3+ 通过阻断传导路径并消除周围的亚稳态位置来抑制锂离子传导。与现有的锂离子二次电池不同,氧化物基全固态电池不存在因损坏而导致电解液泄漏的风险,也不像硫化物基电池那样产生有毒气体的风险。 因此,这项新的创新预计将引领未来的研究。 “新发现的材料是安全的,并且比之前报道的基于氧化物的固体电解质具有更高的离子电导率。 这种材料的应用有望开发出革命性的电池,这种电池可以在从低到高的宽温度范围内工作,”藤本教授展望道。 “我们相信固体电解质应用于电动汽车所需的性能是满足的。”值得注意的是,新材料非常稳定,如果损坏也不会点燃。 它适用于飞机和其他对安全至关重要的地方。 它还适合高容量应用,例如电动汽车,因为它可以在高温下使用并支持快速充电。 此外,它还是一种有前途的用于电池、家用电器和医疗设备小型化的材料。总之,研究人员不仅发现了一种具有高导电性和空气稳定性的锂离子导体,而且还引入了一种新型的超离子导体焦绿宝石型氧氟化物。探索锂周围的局部结构、它们在传导过程中的动态变化,以及它们作为全固态电池固态电解质的潜力,是未来研究的重要领域。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家找出导致电池故障的幽灵般的元凶:软短路

科学家找出导致电池故障的幽灵般的元凶:软短路 阿贡团队的研究重点是全固体电池,其阳极(负极)由锂金属制成。许多人将这种设备视为电池技术的"圣杯"。为什么这么说呢?因为锂金属可以在很小的空间内储存大量电荷。这意味着,与传统的石墨阳极锂离子电池相比,它能使电动汽车的行驶里程更长。然而,锂金属会与传统电池中的液态电解质发生高度反应,这给操作带来了挑战。电解质是在电池的两个电极之间移动被称为离子的带电粒子的材料,可将储存的能量转化为电能。正常工作的电池放电时,离子从阳极通过电解质流向阴极(正极),与此同时,电子从阳极流向外部设备(如手机或电动汽车电机),然后返回阴极。电子流为设备供电。当电池充电时,电子流会反向流动。锂金属的使用往往会破坏这一过程,在充电过程中,锂枝晶会从阳极生长出来并渗入电解液。如果这些枝晶长得足够大并一直延伸到阴极,它们就会在电极之间形成一条永久性的"导线"。最终,电池中的所有电子都会通过这根线从一个电极流向另一个电极,而不会流出电池为设备供电,这一过程也会阻止离子在电极之间流动。"这就是所谓的内部短路,"阿贡博士后、团队首席研究员迈克尔-坎尼汉(Michael Counihan)说,电池发生故障后就不再为设备供电。将锂金属阳极置于固态电池中(换句话说,就是使用固态电解质的电池),有可能减少与枝晶相关的挑战,同时还能保留锂的优点。阿贡团队正在开发一种用于电动汽车电池的新型固体电解质,并注意到了一种不寻常的行为。"当我们在实验室中操作电池时,我们观察到了非常小、非常短暂的电压波动,"Counihan 说。我们决定进行更深入的研究。研究人员对电池进行了数百小时的反复充电和放电,并测量了电压等各种电气参数。研究小组确定,电池正在经历软短路,这是一种微小的暂时性短路。软短路时,枝晶会从阳极向阴极生长。但增长量比永久短路时要小。一些电子留在电池内部,另一些则可能流向外部设备。电极之间的离子流可能会继续流动。所有这些流动都会发生很大的变化。研究小组与阿贡计算专家合作开发了模型,用于预测软短路过程中的离子流和电子流数量。这些模型考虑到了枝晶尺寸和电解质特性等因素。带有软短路的电池可以持续工作数小时、数天甚至数周。但阿贡研究小组发现,随着时间的推移,枝晶的数量通常会增加,最终导致电池失效。Counihan说:"软短路是通向电池永久故障悬崖的第一步。"动态行为研究小组的进一步研究发现,软短路具有非常动态的行为。它们往往在短短的微秒或毫秒内形成、消失和重组。Counihan说:"这对电池研究人员来说是一个重要的启示。在实验室进行典型的电池测试时,研究人员可能每隔一分钟左右才测量一次电压。在这段时间里,电池可能会错过成千上万软短路的形成和死亡。它们就像一个个小幽灵,在不知不觉中破坏着电池。"软短路最常见的原因是发热。当电子流经枝晶时,会产生热量,类似于家用电器电线的发热,热量会迅速融化,尤其是在周围电解液具有隔热性能的情况下。当枝晶与某些电解质发生反应时,软短路就会溶解,阿贡研究小组正在研究的某些固体电解质会在枝晶到达阴极之前将其切断,从而导致内部短路。在对软短路进行广泛研究的过程中,阿贡团队开发并演示了几种检测和分析软短路现象的新方法。例如,一种方法可以量化软短路对电池电流阻力的影响程度。由于不同的电池组件都可能造成这种阻力,因此分离出软短路造成的阻力可以帮助研究人员更好地评估电池的健康状况。这项研究最近发表在《焦耳》(Joule)杂志上,其中包括近 20 种检测和分析技术。其中约三分之一的方法来自该团队最近的研究。研究报告的作者从研究界非正式的、未发表的知识中收集了其他方法。Counihan说:"我们意识到,文献中没有一篇论文使用了其中两种以上的技术。为了让这份清单对研究人员更有用,我们加入了关于每种方法优缺点的信息。由于软短线的动态性很强,因此对于研究人员来说,有很多工具可以使用,以便更好地了解软短线的影响。"研究小组希望为世界各地的研究人员提供有关软短路的见解,为他们的工作提供参考。例如,论文中的技术可以帮助推进阻止枝晶生长的硬固体电解质的设计。Counihan说:"当研究人员了解电池中软短路的动态时,他们就能更好地改进材料,避免这些失效途径。"参考文献:Michael J. Counihan、Kanchan S. Chavan、Pallab Barai、Devon J. Powers、Yuepeng Zhang、Venkat Srinivasan 和 Sanja Tepavcevic 合著的《固态电池研究中动态软短路的幽灵威胁》,2023 年 12 月 6 日,《焦耳》。DOI: 10.1016/j.joule.2023.11.007编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国科学家凭借更安全的锂离子电池荣获2023年欧洲发明家奖

中国科学家凭借更安全的锂离子电池荣获2023年欧洲发明家奖 2023 年 7 月 4 日 –欧洲专利局 (EPO) 今天宣布中国科学家吴凯及其团队荣获 2023 年欧洲发明家奖“非 EPO 国家”类别的获奖者。吴凯和他的团队从 600 多名候选人中脱颖而出团队开发了一种带有顶盖的锂离子电池,可作为降低电池安全风险的屏障。本发明有助于确保配备含有易燃电解质的锂离子(Li-ion)电池的车辆的安全。

封面图片

普通岩石可帮助下一代电动汽车电池实现技术突破

普通岩石可帮助下一代电动汽车电池实现技术突破 丹麦技术大学(DTU)的研究人员 Mohamad Khoshkalam开发出了一种很有前途的固态电池新材料,可以满足容量、安全性、环保性和低成本等所有要求。这种材料主要由岩石中的元素组成,特别是钾和钠硅酸盐,它们是地壳中最丰富的矿物质。此外,这种材料无需使用钴等昂贵的金属,而目前锂离子电池的容量和寿命都需要钴。这种乳白色、薄如纸张的材料可作为电池内部出色的固态电解质层。传统的锂离子电池使用液态电解质,让锂离子在阴极和阳极之间流动,从而产生电流。然而,液态电解质有潜在泄漏等缺点。固态电解质更为安全,并能提高性能。Khoshkalam 的电解质还能在接近室温的 40°C 左右传导离子。这意味着使用这种材料的电池有可能在正常条件下制造,而不是在需要高度控制环境或极端高温的昂贵设施中制造。此外,这种材料不会对湿气产生负面反应。将电解质转化为可用的电池形式需要经过多个步骤。Khoshkalam 制成硅酸钾粉末,将其混合成溶液,然后擀成薄如纸的层。然后,将这些薄层模塑成长达 10 米的白色细长带,并仔细烘干。最后,这些带子被转移到一个特殊的手套箱环境中,与阳极和阴极组件组装成完整的固态电池单元。这些硅酸盐中的钾离子和钠离子比锂离子大一些,也重一些,因此它们不容易流动。不过,Khoshkalam 有一个未公开的"配方",可以增强它们的导电性,超过锂离子通常所能达到的导电性。他的初步测试表明,固态电解质具有很强的性能。当然,将这种材料转化为现实世界中的电动汽车电池还需要时间(甚至可能永远无法通过可行性测试)。与锂离子电池相比,该技术仍然是一项新技术,而锂离子电池经过二十多年才实现商业化,并且还在不断发展。在制造规模上存在挑战,而且需要针对固态电解质进行优化的新电池设计。尽管如此,Khoshkalam 的团队仍希望在几年内开发出演示电池,向公司展示这种材料的潜力。硅酸盐矿物覆盖了地球上 90% 的面积,因此,廉价、环保的电池材料基本上是无限供应的,有待开发。然而,如何兑现这一承诺,而不像之前的许多尝试那样被炒得沸沸扬扬,可能是最大的障碍。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人