德国化学家成功合成含有两种不同金属原子的二茂金属

德国化学家成功合成含有两种不同金属原子的二茂金属 茂金属化学的进步导致了"杂多金属"夹层分子的合成,这种分子的创造具有挑战性,但却为新的化学发现和工业应用提供了潜力。安德烈-舍费尔(André Schäfer)和英格-比绍夫(Inga Bischoff)在实验室中与他们的新型二茂金属样品。图片来源:萨尔州大学/Thorsten Mohr没有人确切知道目前有多少种三明治分子,但数量肯定数以千计。它们都有一个共同点:在两个碳原子的扁平环之间有一个金属原子。至少在 2004 年之前,人们一直是这么认为的,直到塞维利亚大学的一个研究小组有了惊人的发现。长期以来,这种含有两个锌原子的"二茂金属"一直是同类作品中的佼佼者,直到去年英国的一个研究小组成功合成了一种非常类似的含有两个铍原子的分子。但现在,德国萨尔州大学安德烈-舍费尔博士研究小组的博士生英格-比肖夫(Inga Bischoff)又向前迈进了一大步。她成功地在实验室中合成了世界上第一个"异双金属"夹层复合物一种含有两种不同金属原子的二茂金属。理论与实践的突破2004 年发现第一个茂金属后不久,理论研究表明它不一定要含有两个完全相同的金属原子,含有两个不同金属原子的复合物也应该是稳定的。这些预测是在利用功能强大的计算机进行量子化学建模计算的基础上得出的。尽管预测了这种分子的稳定性,但在英格-比绍夫取得目前的突破之前,所有在实验室中制造这种分子的尝试都没有成功。"当你意识到手中握着的是什么时,你会感到非常兴奋和特别。肉眼看上去,它只是另一种白色粉末。但我仍然清楚地记得,当我们第一次在电脑屏幕上看到实验测定的分子结构时,我们知道我们有了一个含有两种不同金属原子的三明治分子,"安德烈-舍费尔博士说。"选择哪种碳环和在碳环之间包围哪种金属原子一样重要。这一点至关重要,因为环状碳环和金属原子的电子结构必须相互匹配,我们的'异双金属二茂金属'中包含的金属是锂和铝。计算预测这两种金属将是合适的候选金属,因为它们的电子结构在某些意义上与两个锌原子的电子结构相似,我们知道这两种金属可以形成稳定的二茂金属。"但是,听起来简单明了的事情却花了几个月的时间才实现。事实证明,这种分子非常活跃,只能在惰性氮气或氩气毯下合成、储存和分析。如果它接触到空气,就会直接分解。一旦合成了这种分子,就需要对其进行表征,这就需要萨尔州大学的整个科学家团队的参与。他们的工作成果现已发表在备受推崇的《自然-化学》杂志上。"我们的杂多金属二茂金属实际上代表了一类全新的夹层分子。"小组负责人 André Schäfer 博士说:"谁知道呢,也许有一天它也会被写进学生的教科书中。但首先,我们需要进一步研究它。目前,我们对它的结构有了很好的了解,但对它的反应性仍然知之甚少。如果我们找到其他合适的金属原子组合,将来很可能合成出其他夹杂多金属的二茂金属。"1973 年,德国化学家恩斯特-奥托-费舍尔(Ernst Otto Fischer)和英国化学家杰弗里-威尔金森(Geoffrey Wilkinson)获得诺贝尔奖,以表彰他们在有机金属(即所谓的夹心化合物)化学方面独立完成的开创性工作,这凸显了这类分子的巨大意义。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家用铜和碳原子锻造出世界上最细的金属丝

科学家用铜和碳原子锻造出世界上最细的金属丝 洛桑联邦理工学院(EPFL)的研究人员利用计算方法研究了78万多种晶体的结构特性,确定了潜在的单维纳米材料,包括可能是最细的金属丝。他们的发现聚焦了14种在电子学和量子研究中具有潜在用途的材料。资料来源:NCCR MARVEL研究人员利用计算工具寻找可以从已知三维晶体中剥离出来的新型一维材料。在一份包含 78 万多种晶体的初始清单中,他们得出了一份包含 800 种一维材料的清单,并从中选出了 14 种最佳候选材料这些化合物尚未合成为真正的金属丝,但模拟结果表明是可行的。其中包括金属丝CuC2,它是由两个碳原子和一个铜原子组成的直线链,是迄今发现的在 0 K 温度下稳定的最细金属纳米线。洛桑联邦理工学院材料理论与模拟实验室的研究人员利用计算方法确定了可能是最细的金属丝,以及其他几种单维材料,这些材料的特性可能会被证明对许多应用领域很有意义。单维(或一维)材料是纳米技术最引人入胜的产品之一,由原子排列成线或管状组成。它们的电学、磁学和光学特性使其成为从微电子学到生物传感器再到催化等各种应用的绝佳候选材料。虽然碳纳米管是迄今为止最受关注的材料,但事实证明它们非常难以制造和控制,因此科学家们迫切希望找到其他化合物,用于制造具有同样有趣特性但更容易处理的纳米线和纳米管。因此,Chiara Cignarella、Davide Campi和Nicola Marzari想到利用计算机模拟来解析已知的三维晶体,根据它们的结构和电子特性,寻找那些看起来很容易"剥离"的晶体,从本质上剥离出稳定的一维结构。同样的方法过去曾成功用于研究二维材料,但这是首次应用于一维材料。研究人员从文献中的各种数据库中收集了超过 78 万个晶体,这些晶体通过范德华力(原子距离足够近,电子重叠时产生的一种微弱相互作用)结合在一起。然后,他们采用一种算法,考虑原子的空间组织,寻找具有线状结构的原子,并计算出需要多少能量才能将这种一维结构从晶体的其他部分分离出来。论文第一作者 Cignarella 说:"我们一直在寻找金属丝,但这种金属丝应该很难找到,因为一维金属原则上应该不够稳定,无法进行剥离"。最终,他们得出了一份包含 800 种一维材料的清单,并从中选出了 14 种最佳候选材料这些化合物尚未合成为真正的导线,但模拟结果表明是可行的。然后,他们开始更详细地计算这些材料的特性,以验证它们的稳定性如何,以及人们对它们的电子行为有何期待。四种材料两种金属和两种半金属成为最有趣的材料。其中金属丝CuC2 是由两个碳原子和一个铜原子组成的直线链是迄今发现的在 0 K 温度下稳定的最细金属纳米线。Cignarella说:"这真的很有趣,因为你不会想到由单线原子组成的实际金属丝会在金属相中保持稳定。科学家们发现,它可以从三种不同的母晶体中剥离出来,这些晶体都是实验中已知的(NaCuC2、KCuC2和 RbCuC2)。从它们中提取这种物质所需的能量很少,而且其链可以弯曲,同时保持其金属特性,这将使它对柔性电子产品产生兴趣。"这项发表在《ACS Nano》上的研究还发现了其他有趣的材料,其中包括半金属Sb2Te2,由于其特性,可以研究一种 50 年前就被预测但从未被观测到的奇异物质状态,即激子绝缘体,这是量子现象在宏观尺度上变得可见的罕见情况之一。此外,还有另一种半金属Ag2Se2 和TaSe3,后者是一种著名的化合物,也是唯一一种已经在实验中剥离成纳米线的化合物,科学家将其作为基准。至于未来,Cignarella 解释说,研究小组希望与实验人员合作,实际合成这些材料,同时继续进行计算研究,了解它们如何传输电荷以及在不同温度下的表现。这两点对于了解它们在实际应用中的性能至关重要。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

耶鲁大学化学家从海洋生物中分离出独特的抗癌分子

耶鲁大学化学家从海洋生物中分离出独特的抗癌分子 将近三十年前,研究人员在原产于热带水域的一类海洋无脊椎动物 - 苔藓虫内发现了一组独特的抗癌化合物。这些分子的化学结构由氧化环和氮原子组成,结构复杂而密集,引起了全世界有机化学家的兴趣,他们希望在实验室中从头开始重新创造这些结构。然而,尽管付出了相当大的努力,这仍然是一项难以实现的任务。现在,耶鲁大学的一个化学家小组在《科学》杂志上撰文指出,他们采用一种将创造性的化学策略与最新的小分子结构测定技术相结合的方法,首次成功合成了其中的八种化合物。"这些分子一直是合成化学领域的一项杰出挑战,"耶鲁大学文理学院米尔顿-哈里斯(Milton Harris),化学教授、新研究的通讯作者塞斯-赫松(Seth Herzon)说。"许多研究小组都曾试图在实验室中重现这些分子,但它们的结构非常致密、错综复杂,因此一直无法实现。从本世纪初我还是一名研究生的时候,我就一直在阅读有关合成这些化合物的文章"。在自然界中,这些分子存在于某些种类的外肛动物门动物体内,它们是小型水生动物,通过细小的触手过滤水中的猎物。全世界的研究人员都认为苔藓虫是新药物的潜在宝贵来源,许多从苔藓虫中分离出来的分子已被研究用作新型抗癌剂。然而,分子的复杂性往往限制了它们的进一步发展。赫松的研究小组研究了一种名为"Securiflustra securifrons"的贝类。他介绍说:"大约十年前,我们曾研究过这些分子,虽然当时没有成功地再现它们,但我们对它们的结构和化学反应性有了深入的了解,这为我们的思考提供了依据。"新方法涉及三个关键的战略要素。首先,Herzon 和他的团队避免在整个过程的最后阶段构建反应性杂环(即吲哚)。杂环包含两个或两个以上的元素,而这种特定的环是众所周知的反应性环,会产生问题。其次,研究人员使用了被称为氧化光环化的方法来构建分子中的一些关键键。其中一种光环化反应涉及杂环与分子氧的反应,耶鲁大学的哈里-瓦瑟曼(Harry Wasserman)在 20 世纪 60 年代首次对这种反应进行了研究。最后,赫松和他的团队采用了微晶电子衍射(MicroED)分析来帮助观察分子结构。在这种情况下,传统的结构测定方法是不够的。新方法的成果是八种具有治疗潜力的新合成分子,并有望产生更多新化学物质。"就分子量而言,它们与我们实验室研究的其他分子相比并不算大。但从化学反应性的角度来看,它们是我们所面临的最大挑战之一"。赫松介绍说,同时他也是耶鲁大学癌症中心的成员,并在耶鲁大学医学院药理学和放射治疗学领域担任联合职务。编译自:ScitechDaily ... PC版: 手机版:

封面图片

中国科学家实现二维金属碲化物材料的批量制备

中国科学家实现二维金属碲化物材料的批量制备 二维过渡金属碲化物材料是一类新兴的二维材料,由碲原子(Te)和过渡金属原子(如钼、钨、铌等)组成,其微观结构类似于“三明治”,过渡金属原子被上下两层的碲原子“夹”住,形成层状二维材料。因具有奇特的超导、磁性、催化活性等物理和化学性质,二维过渡金属碲化物材料在量子通讯、催化、储能、光学等领域展现出重要应用潜力,受到了国际学术界的广泛关注。科学家实现二维金属碲化物材料的批量制备(中国科学院大连化学物理研究所供图)“比如,二维过渡金属碲化物具有高导电性和大比表面积,可作为高性能超级电容器和电池的电极材料;同时二维过渡金属碲化物纳米片表面具有丰富可调的活性位点,可用作制备绿氢和双氧水的电催化剂,提高催化剂的选择性、效率和性能;此外,该材料还展现出特有的量子现象,如超导和巨磁电阻等,可作为下一代低功耗器件和高密度磁性存储器件的材料。”论文共同通讯作者、中国科学院大连化物所研究员吴忠帅解释。然而,目前该材料还无法实现高质量的批量制备,阻碍了其实际应用。二维过渡金属碲化物材料一般采用“自上而下”的制备方法,如同拆解积木,通过机械力或化学作用方式将其一层一层剥离下来,从而制备出单层的二维纳米片。常用的“自上而下”方法有化学插层剥离法、球磨法、胶带剥离法、液相超声法等,其中化学插层剥离法的剥离效率虽然最高,但剥离仍需要数小时。批量化可控制备二维过渡金属碲化物纳米片(中国科学院大连化学物理研究所供图)科学家们大多采用有机锂试剂作为插层剂,即将含有锂离子的插层剂插入块体层状结构材料的片层中,并利用锂和水的反应使插层剂“膨胀”,在每一层间形成一个“气压柱”,将叠在一起的纳米片层层“撑开”,就如同使用了一把“化学刮刀”一层一层地将纳米片“刮”下来,这种层间的气体膨胀作用力远大于机械剥离力,可以提高剥离效率。“但是,有机锂是一种易燃易爆的液体试剂,具有很大的安全隐患。因此,实现安全、高效的化学剥离成为科学家努力的目标。”吴忠帅说。此次,科研人员创新性地采用固相化学插层剥离方法,筛选出了一种固相插层试剂硼氢化锂。硼氢化锂具有强还原性质,在干燥空气中稳定,可用于高温固相插锂反应,解决了插层反应速度慢的问题,从而实现了安全、高效、快速的插层剥离。整个插层剥离过程只需10分钟,可批量制备出百克级(108克)碲化铌纳米片,与液相化学插层剥离法制备量均小于1克相比,此方法的产量提升了两个数量级。值得关注的是,科研人员还利用此方法制备出了五种不同过渡金属的二维过渡金属碲化物纳米片和十二种合金化合物纳米片,证明这种方法具有普适性。“该方法简单、快速、高效,对二维材料的宏量制备具有普适意义。”《自然》审稿人对该方法给予了高度评价。吴忠帅表示,利用该方法制备出的二维过渡金属碲化物纳米片的溶液和粉体具有良好的加工性能,可以作为各种功能性浆料,实现薄膜、丝网印刷器件、3D打印器件、光刻器件的高效和定制化加工等,有望在高性能量子器件、柔性电子、微型超级电容器、电池、催化、电磁屏蔽、复合材料等方向发挥重要作用。 ... PC版: 手机版:

封面图片

哥伦比亚大学工程师开发出光控分子设备

哥伦比亚大学工程师开发出光控分子设备 利用光来控制电子特性,哥伦比亚工程公司的新型单分子器件具有直接的金属-金属接触,标志着分子电子学的重大进展,有望提高电子元件的微型化和效率。资料来源:文卡特拉曼实验室挑战随着设备不断缩小,其电子元件也必须微型化。使用有机分子作为导电通道的单分子器件有可能解决传统半导体所面临的微型化和功能化难题。这种器件提供了利用光进行外部控制的令人兴奋的可能性,但到目前为止,研究人员还无法证明这一点。分子电子学先驱、劳伦斯-古斯曼应用物理学教授兼哥伦比亚大学工程学院化学教授拉塔-文卡塔拉曼(Latha Venkataraman)说:"通过这项工作,我们开启了分子电子学的一个新维度,即可以用光来控制分子如何在两个金属电极之间的间隙中结合。"这就像是在纳米尺度上打开了一个开关,为设计更智能、更高效的电子元件开辟了各种可能性。"方法近二十年来,Venkataraman 的研究小组一直在研究单分子器件的基本特性,探索纳米尺度上物理、化学和工程学的相互作用。她的研究重点是构建具有各种功能的单分子电路,即一个分子连接两个电极,电路结构以原子精度定义。她的研究小组以及利用碳基二维材料石墨烯制造功能器件的研究小组都知道,在金属电极和碳系统之间建立良好的电接触是一项重大挑战。解决方案之一是使用有机金属分子,并设计出将电导线与分子内的金属原子连接起来的方法。为了实现这一目标,他们决定探索使用有机金属含铁二茂铁分子,这种分子也被认为是纳米技术世界中的微小积木。就像乐高积木可以堆砌出复杂的结构一样,二茂铁分子也可以用作构建超小型电子设备的积木。研究小组使用了一种以二茂铁基团为端基的分子,该分子由两个碳基环戊二烯环组成,环戊二烯环夹着一个铁原子。然后,他们利用二茂铁分子的电化学特性,在分子处于氧化状态(即铁原子失去一个电子)时,在二茂铁铁中心和金(Au)电极之间形成直接键合。在这种状态下,他们发现二茂铁可以与用于连接分子和外部电路的金电极结合。从技术上讲,氧化二茂铁可以使 Au0 与 Fe3+ 中心结合。该研究的第一作者 Woojung Lee 是 Venkararaman 实验室的一名博士生,他说:"通过利用光诱导氧化,我们找到了一种在室温下操纵这些微小构件的方法,为未来在分子水平上利用光控制电子设备的行为打开了大门。"潜在影响Venkataraman 的新方法将使她的团队能够扩展用于创建单分子器件的分子终端(接触)化学类型。这项研究还表明,利用光来改变二茂铁的氧化态,就能打开或关闭这种接触,从而展示了一种基于二茂铁的光开关单分子器件。这种光控器件可为开发响应特定光波长的传感器和开关铺平道路,从而为各种技术提供用途更广、效率更高的元件。团队这项工作是一项涉及合成、测量和计算的合作成果。合成工作主要由 Michael Inkpen 在哥伦比亚大学完成,他曾是 Venkataraman 小组的博士后,现在是南加州大学的助理教授。所有的测量工作都是由 Venkataraman 小组的研究生 Woojung Lee 完成的。计算由文卡塔拉曼小组的研究生和德国雷根斯堡大学的合作者共同完成。下一步行动研究人员目前正在探索光控单分子器件的实际应用。这可能包括优化器件性能、研究它们在不同环境条件下的行为,以及完善金属-金属界面所带来的其他功能。 ... PC版: 手机版:

封面图片

研究发现番茄植株会利用两种不同的代谢途径产生自我防御机制

研究发现番茄植株会利用两种不同的代谢途径产生自我防御机制 番茄焦油是热心园艺家们最熟悉的一种麻烦,它是一种金黑色的粘性物质,在接触植物后会附着在手上。原来,这种物质特有的粘性有一个重要的作用。它是由一种叫做酰基糖的糖组成的,对害虫来说是一种天然的"苍蝇纸"。这项研究的负责人、密歇根州立大学研究员罗伯特-拉斯特(Robert Last)说:"植物在进化过程中制造了许多神奇的毒药和其他生物活性化合物。Last 实验室专门研究酰基糖以及产生和储存酰基糖的微小毛发状结构,即毛状体。"一项惊人的发现是,研究人员在番茄根部也发现了曾被认为只存在于毛状体中的酰基糖。这一发现是一个遗传学之谜,它提出了许多问题,也带来了许多启示。MSU 研究的目的是了解这些根部酰基糖的来源和功能。他们发现,番茄植物不仅在根部和毛状体中合成化学性质独特的酰基糖,而且这些酰基糖是通过两条平行的代谢途径产生的。这就相当于汽车厂的流水线在生产同一款汽车的两种不同型号,但却从不相互影响。在密歇根州立大学生物化学和分子生物学系,番茄幼苗是 Last 实验室为研究茄科植物而培育的。研究人员分析了根和芽之间独特的化学差异,两者都含有酰基糖。图片来源:Connor Yeck/麻省理工大学这些发现有助于科学家们更好地了解茄科植物的恢复能力和进化过程,茄科是一个庞大的植物家族,包括西红柿、茄子、马铃薯、辣椒、烟草和牵牛花。它们还能为研究人员提供有价值的信息,帮助他们将植物制造的分子开发成化合物,以帮助人类。"从药品、杀虫剂到防晒霜,人类为不同用途改造的许多小分子都来自植物、微生物和昆虫之间的军备竞赛,"Last 说。除了生长所必需的关键化学物质外,植物还能产生在环境互动中发挥关键作用的化合物宝库。这些化合物可以吸引有用的授粉者,也是抵御有害生物的第一道防线。密歇根州立大学博士后研究员、最新论文的第一作者雷切尔-柯文(Rachel Kerwin)说:"这些特殊代谢物的非凡之处在于,它们通常是在高度精确的细胞和组织中合成的。""以酰基糖为例,我们不会在番茄植株的叶片或茎中发现它们。这些具有物理粘性的防御代谢物就产生于毛状体的顶端。"当有报道称在番茄根部也能发现酰基糖时,Kerwin 认为这是对老式基因侦查工作的一种呼唤。从左到右:Jaynee Hart、Rachel Kerwin 和 Robert Last 在密歇根州立大学质谱和代谢组学核心的分析设备前合影。研究小组揭开了番茄植物的进化和遗传之谜。图片来源:Connor Yeck/密歇根州立大学这些酰基糖在根部的出现令人着迷,并引发了许多问题。这是如何发生的,它们是如何被制造出来的,它们与我们一直在研究的毛状体酰基糖是否不同?为了着手解决这个进化之谜,实验室成员与 MSU 质谱分析和代谢组学核心的专家以及 Max T. Rogers 核磁共振设施的工作人员进行了合作。在比较番茄幼苗根部和芽部的代谢物时,发现了多种差异。地上部分和地下部分酰基糖的基本化学组成明显不同,以至于可以将它们完全定义为不同类别的酰基糖。最后,密苏里大学自然科学学院生物化学与分子生物学系和植物生物学系的大学特聘教授用一个有用的比喻来解释遗传学家是如何研究生物学的。"他说:"试想一下,如果要弄清一辆汽车是如何工作的,就必须一个一个部件地拆出来,把汽车轮胎弄平后发现发动机还能运转,那么即使你不知道轮胎的具体作用,也算发现了一个关键事实。"把上面举例中的汽车零件换成基因,就能更清楚地了解最后实验室为进一步破解根部酰基糖密码所做的工作。通过查看公开的基因序列数据,Kerwin 注意到在番茄毛状体酰基糖生产过程中表达的许多基因在根部都有近亲。在确定了一种被认为是根部酰基糖生物合成第一步的酶后,研究人员开始"拆车"。当他们敲除根部酰基糖候选基因时,根部酰基糖的生产消失了,而毛状体酰基糖的生产没有受到影响。与此同时,当研究充分的毛状体酰基糖基因被敲除时,根部酰基糖的生产照常进行。这些发现有力地证明了疑似代谢镜像的存在。Last说:"除了我们研究多年的地面酰基糖途径外,我们在这里发现了存在于地下的第二个平行宇宙。"Kerwin补充说:"这证实了我们在同一种植物中同时存在两种途径。"为了实现这一突破,最新论文的第二作者、博士后研究员杰尼-哈特(Jaynee Hart)仔细研究了毛状体和根酶的功能。正如毛状体酶和它们产生的酰基糖是一种经过充分研究的化学匹配,她发现根部酶和根部酰基糖之间也有很好的联系。哈特解释说:"研究分离出来的酶是一种强大的工具,可以确定它们的活性,并就它们在植物细胞内的功能作用得出结论。"这些发现进一步证明了单株番茄植物中存在的平行代谢途径。"植物和汽车是如此不同,但又如此相似,当你打开众所周知的引擎盖时,你就会意识到使它们发挥作用的众多部件和连接。这项工作让我们对番茄植物的其中一个部件有了新的认识,并促使我们进一步研究它的进化和功能,以及我们是否能以其他方式利用它,"资助这项工作的美国国家科学基金会项目主任潘卡杰-贾斯瓦尔(Pankaj Jaiswal)说。"我们对生物从西红柿和其他作物到动物和微生物了解得越多,利用所学知识造福社会的机会就越广泛。"该论文还报告了与生物合成基因簇(BGCs)有关的一个令人着迷和意想不到的转折。BGC是染色体上物理分组的基因集合,有助于特定的代谢途径。此前,Last 实验室发现了一个 BGC,其中含有与番茄植株毛状体酰基糖有关的基因。现在,Kerwin、Hart 和他们的合作者发现,根部表达的酰基糖酶也在同一个基因簇中。Kerwin说:"通常在BGCs中,基因在相同的组织和相似的条件下共同表达。有些在毛状体中表达,有些在根中表达。"这一发现促使Kerwin深入研究茄科植物的进化轨迹,希望找出这两种独特的酰基糖途径是何时以及如何形成的。具体来说,研究人员注意到,大约1900万年前,负责毛状体酰基糖的酶发生了复制。这种酶有朝一日将负责新发现的根部表达的酰基糖途径。在根部"开启"这种酶的确切机制仍然未知,这为 Last 实验室继续解开茄科植物的进化和代谢秘密铺平了道路。与茄科植物的合作提供了如此多的科学资源,以及一个强大的研究人员社区。通过它们作为作物和园艺的重要性,这些植物是人类数千年来一直关心的对象。最后,这些突破也提醒人们天然杀虫剂的重要性,酰糖类等防御代谢物最终代表了天然杀虫剂。如果我们发现这些根部酰基糖能够有效地驱除有害生物,是否可以将它们培育到其他茄科植物中,从而帮助植物生长,而无需使用有害的合成杀真菌剂和杀虫剂?这些问题是人类追求更纯净的水、更安全的食品和减少对有害合成化学品的依赖的核心所在。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国科学家“看到”冰表面原子结构

中国科学家“看到”冰表面原子结构 北京大学物理学院、北京怀柔综合性国家科学中心轻元素量子材料交叉平台(简称轻元素平台)组成的研究团队,利用自主研发的国产 qPlus 型扫描探针显微镜,在国际上首次“看到”冰表面的原子结构,并揭示其在零下 153 摄氏度即开始融化的奥秘。该成果 22 日晚发表于国际学术期刊《》上。 冰表面的研究对探索生命起源和物质来源具有重要意义,但因缺乏原子尺度实验工具,科学界对冰表面结构的基本问题一直未有明确解答。 据介绍,团队利用 qPlus 型扫描探针显微镜,开发出可分辨氢原子和化学键的成像技术,实现冰表面水分子氢键网络的精确识别和氢原子分布的精准定位。探测发现,冰表面结构同时存在六角密堆积和立方密堆积两种排列方式,且拼接堆砌形成稳定的网络结构。 轻元素平台负责人江颖教授表示:“我们通过变温实验,首次在原子尺度上‘看到’冰表面预融化的过程,发现其在零下 153 摄氏度时就开始融化,这对理解冰面的润滑现象、云的形成及冰川的消融过程等至关重要”。来源 , 频道:@kejiqu 群组:@kejiquchat

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人