麻省理工学院工程师创造出先进铅检测设备 一滴水就能提供近乎即时的准确结果

麻省理工学院工程师创造出先进铅检测设备 一滴水就能提供近乎即时的准确结果 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 芯片表面的艺术效果图,显示芯片上用于检测铅存在的光干涉仪。插图显示了铅与冠醚的结合过程。资料来源:Jia Xu Brian Sia麻省理工学院、南洋理工大学和几家公司的工程师们开发出了一种用于检测和测量水中铅浓度的小巧而廉价的技术,有可能在解决这一长期存在的全球健康问题方面取得重大进展。据世界卫生组织估计,全世界有 2.4 亿人暴露在含有不安全有毒铅的饮用水中,铅会影响儿童的大脑发育,导致先天缺陷,并产生各种神经、心脏和其他破坏性影响。仅在美国,估计就有 1,000 万户家庭的饮用水仍然是通过铅管输送的。用于传输分析溶液的微流体室和侧面用于测量芯片光子响应的光导纤维 图片来源:研究人员提供 麻省理工学院博士后贾旭-布莱恩-西亚(Jia Xu Brian Sia)是介绍这项新技术的论文的资深作者,他说:"这是一个尚未解决的公共卫生危机,每年导致超过 100 万人死亡。"然而,检测水中的铅需要昂贵、笨重的设备,通常需要数天才能得到结果。或者,使用简单的试纸,只能得出铅是否存在的答案,却无法得知铅的浓度。美国环保局的现行规定要求饮用水中的铅含量不得超过十亿分之十五,这个浓度非常低,很难检测出来。这一新系统可在两三年内投入商业应用,利用一个安装在手持设备中的基于芯片的简单检测器,可高精度地检测出低至十亿分之一的铅浓度。该技术几乎可以立即进行定量测量,而且只需要一滴水。5月14日,Sia、麻省理工学院研究生兼主要作者Luigi Ranno、胡觉俊教授以及麻省理工学院和其他学术界和工业界机构的其他12人在《自然-通讯》(Nature Communications)杂志上发表了一篇论文,对这些发现进行了描述。贾旭-布莱恩-西亚(左)和路易吉-兰诺(右)展示完全封装的传感器芯片和微流体室。图片来源:研究人员提供研究小组开始寻找一种基于光子芯片的简单检测方法,这种芯片利用光来进行测量。具有挑战性的部分是找到一种方法,将某些被称为冠醚的环形分子附着在光子芯片表面,冠醚可以捕捉特定的离子,如铅。经过多年努力,他们终于通过一种名为费歇尔酯化的化学过程实现了这种附着。"这是我们在这项技术上取得的重要突破之一。在对新芯片的测试中,研究人员发现它可以检测出水中低至十亿分之一浓度的铅。在更高浓度的情况下(可能与检测环境污染(如矿山尾矿)有关),其准确度在 4% 以内。多功能性和实际应用Sia 说:"该装置可在酸度不同的水中工作,pH 值从 6 到 8 不等,涵盖了大多数环境样本。他们用海水和自来水对该装置进行了测试,并验证了测量的准确性。"为了达到这样的精确度,目前的测试需要一种叫做电感耦合等离子体质谱仪的设备。Sia说:"这些装置可能很大,而且很昂贵。样品处理可能需要数天时间,而且需要经验丰富的技术人员。"兰诺说,虽然他们开发的新芯片系统是"创新的核心部分",但要将其开发成一个集成的手持设备供实际使用,还需要进一步的工作。他解释说:"要制造出实际产品,就需要将其封装成可用的外形尺寸。这就需要在光子芯片上耦合一个基于芯片的小型激光器。这是一个机械设计、光学设计、化学和供应链的问题。他说,虽然这需要时间,但基本概念是简单明了的。"该系统可用于检测水中其他类似的污染物,包括镉、铜、锂、钡、铯和镭。该设备可与简单的滤芯一起使用,这些滤芯可以更换,以检测不同的元素,每种元素使用的冠醚都略有不同,可以与特定的离子结合。对全球健康的影响"人们对水的测量不够,尤其是在发展中国家,这是一个问题,"兰诺说。"这是因为他们需要采集水、准备样本,然后把水带到这些极其昂贵的大型仪器前。相反,"有了这种手持式设备,即使是未经培训的人员也能以低廉的成本将其带到水源地进行现场监测",就能使定期、持续的广泛检测变得可行。"身为材料科学与工程系约翰-F-埃利奥特(John F. Elliott)教授的 Hu 说:"我希望这项技术能尽快得到应用,从而造福人类社会。这是一个很好的例子,说明来自实验室创新的技术可能真的会对社会产生非常切实的影响,这当然是非常有成就感的。"中国湖南大学环境科学与工程学院副教授王厚说:"如果这项研究能够扩展到同时检测多种金属元素,尤其是目前涉及的放射性元素,那么它的潜力将是巨大的。"王补充说:"这项研究设计出了一种能够即时检测水中铅浓度的传感器。这可用于实时监测电池制造和铅冶炼等工业废水中的铅污染浓度,从而促进工业废水监测系统的建立。我认为这项研究的创新性和发展潜力相当值得称赞。"新加坡材料研究所首席研究科学家王谦(Wang Qian)对此评论说:"主要由于成本问题,对铅进行普遍、便携和定量检测的能力已被证明具有挑战性。这项工作展示了以高度集成的形式实现这一目标的潜力,并且与大规模、低成本制造兼容。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

《侏罗纪公园》剧情成真:麻省理工学院创造出用于储存 DNA 的合成琥珀

《侏罗纪公园》剧情成真:麻省理工学院创造出用于储存 DNA 的合成琥珀 DNA 保存技术的进步在电影《侏罗纪公园》中,科学家提取了在琥珀中保存了数百万年的 DNA,并用它创造了早已灭绝的恐龙种群。麻省理工学院的研究人员部分受这部电影的启发,开发出一种玻璃状、类似琥珀的聚合物,可用于长期存储 DNA,无论是整个人类基因组还是照片等数字文件。目前大多数储存 DNA 的方法都需要冷冻温度,因此需要消耗大量能源,在世界上许多地方都不可行。相比之下,新型琥珀状聚合物可以在室温下储存 DNA,同时保护分子不受热量或水的破坏。研究人员证明,他们可以用这种聚合物存储编码《侏罗纪公园》主题音乐的 DNA 序列以及整个人类基因组。他们还证明,DNA 可以很容易地从聚合物中取出,而不会对其造成损坏。简化 DNA 保存技术前麻省理工学院博士后詹姆斯-巴纳尔(James Banal)说:"冷冻 DNA 是保存 DNA 的首要方法,但这种方法非常昂贵,而且无法扩展。我认为,我们的新保存方法将成为一种可能推动未来在 DNA 上存储数字信息的技术"。巴纳尔和麻省理工学院A. Thomas Geurtin化学教授杰里迈亚-约翰逊(Jeremiah Johnson)是这项研究的资深作者,他们的研究成果于6月12日发表在《美国化学学会学报》(Journal of the American Chemical Society)上。麻省理工学院前博士后 Elizabeth Prince 和麻省理工学院博士后 Ho Fung Cheng 是论文的主要作者。麻省理工学院的研究人员设计出了一种将 DNA 封装到一种名为交联聚苯乙烯的热固性聚合物中的方法。DNA 被嵌入聚合物后,可以通过用半胱胺处理聚合物再次释放出来。图片来源:研究人员提供探索新的 DNA 编码方法DNA 是一种非常稳定的分子,非常适合存储海量信息,包括数字数据。数字存储系统将文本、照片和其他类型的信息编码为一系列 0 和 1。同样的信息可以通过构成遗传密码的四种核苷酸编码到 DNA 中:例如,G 和 C 可用来表示 0,而 A 和 T 则表示 1。DNA 提供了一种高密度存储数字信息的方法:从理论上讲,一个装满 DNA 的咖啡杯就可以储存全世界的数据。DNA 还非常稳定,合成和排序也相对容易。2021 年,巴纳尔和他的博士后导师、麻省理工学院生物工程教授马克-巴特(Mark Bathe)开发出一种将 DNA 储存在二氧化硅颗粒中的方法,这些颗粒可以贴上标签,显示颗粒中的内容。这项工作促成了名为"Cache DNA"的衍生公司的诞生。这种储存系统的一个缺点是,将 DNA 嵌入二氧化硅颗粒需要几天的时间。此外,从颗粒中移除 DNA 需要氢氟酸,而氢氟酸会对处理 DNA 的工人造成危害。用于 DNA 存储的创新聚合物设计为了找到替代存储材料,巴纳尔开始与约翰逊及其实验室成员合作。他们的想法是使用一种被称为可降解热固性的聚合物,这种聚合物在加热时会形成固体。这种材料还包括易于断裂的可裂解链节,使聚合物能够以可控的方式降解。约翰逊说:"有了这些可解构热固性塑料,根据我们在其中加入的可裂解键,我们可以选择如何降解它们。"在这个项目中,研究人员决定用苯乙烯和一种交联剂来制造热固性聚合物,它们共同形成了一种琥珀色的热固性聚合物交联聚苯乙烯。这种热固性聚合物还具有很强的疏水性,因此可以防止水分进入并破坏 DNA。为了使这种热固性物质可以降解,苯乙烯单体和交联剂与称为亚硫酰内酯的单体共聚。通过使用一种名为半胱胺的分子对其进行处理,可以切断这些连接。T-REX 方法:DNA 储存的新方法由于苯乙烯非常疏水,研究人员必须想出一种方法来诱导 DNA(一种亲水性、带负电荷的分子)进入苯乙烯。为此,他们找到了三种单体的组合,并将其转化为聚合物,通过帮助 DNA 与苯乙烯相互作用来溶解 DNA。每种单体都有不同的特性,它们通力合作,使 DNA 离开水进入苯乙烯。在那里,DNA 形成球形复合物,带电的 DNA 位于中心,疏水基团形成与苯乙烯相互作用的外层。加热后,这种溶液会变成玻璃状的固体块,其中嵌入 DNA 复合物。研究人员将他们的方法命名为 T-REX(热固性强化湿保存)。研究人员说,将DNA嵌入聚合物网络的过程需要几个小时,但随着进一步优化,这个时间可能会缩短。为了释放 DNA,研究人员首先加入半胱胺,半胱胺会裂解将聚苯乙烯热固性材料连接在一起的键,将其分解成小块。然后,再加入一种名为 SDS 的洗涤剂,这样就能在不损坏聚苯乙烯的情况下将 DNA 从聚苯乙烯中分离出来。DNA 存储技术的未来研究人员利用这些聚合物证明,他们可以封装不同长度的 DNA,从几十个核苷酸到整个人类基因组(超过 50000 个碱基对)。除了《侏罗纪公园》的主题音乐外,他们还能存储编码《解放奴隶宣言》和麻省理工学院徽标的 DNA。在对 DNA 进行存储和移除之后,研究人员对其进行了测序,发现没有引入任何错误,这是任何数字数据存储系统的关键特征。研究人员还发现,这种热固性聚合物可以在高达 75摄氏度(167华氏度)的温度下保护 DNA。目前,他们正在研究如何简化聚合物的制作过程,并将其制成胶囊,以便长期储存。对个性化医疗和未来研究的影响Cache DNA 是由 Banal 和 Bathe 创办的一家公司,Johnson 是该公司科学顾问委员会的成员。他们设想的最早应用是存储用于个性化医疗的基因组,他们还预计,随着未来更好技术的开发,这些存储的基因组可能会被进一步分析。"我们的想法是,为什么不永远保存生命的主记录呢?巴纳尔说。"10年或20年后,当科技的进步远远超出我们今天的想象时,我们可以了解到越来越多的东西。我们对基因组及其与疾病的关系的了解还处于起步阶段。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院揭幕"质子之舞": 开拓能源新时代

麻省理工学院揭幕"质子之舞": 开拓能源新时代 麻省理工学院的化学家们首次详细描绘了这些质子耦合电子转移是如何在电极表面发生的。他们的研究成果可以帮助研究人员设计出更高效的燃料电池、电池或其他能源技术。麻省理工学院化学和化学工程教授、该研究的资深作者 Yogesh Surendranath 说:"我们在这篇论文中取得的进展是研究和理解了这些电子和质子如何在表面部位耦合的性质,这与催化反应有关,而催化反应在能量转换装置或催化反应中非常重要。"在他们的研究成果中,研究人员能够准确追踪电极周围电解质溶液 pH 值的变化如何影响电极内质子运动和电子流动的速度。麻省理工学院研究生诺亚-刘易斯(Noah Lewis)是这篇论文的第一作者,论文最近发表在《自然-化学》上。麻省理工学院前博士后 Ryan Bisbey、麻省理工学院研究生 Karl Westendorff 和耶鲁大学研究科学家 Alexander Soudackov 也是这篇论文的作者。质子传递质子耦合电子转移是指一种分子(通常是水或酸)将质子转移到另一种分子或电极表面,从而刺激质子接受者也接受一个电子。这种反应已被广泛应用于能源领域。"这些质子耦合电子转移反应无处不在。它们通常是催化机制中的关键步骤,对于制氢或燃料电池催化等能量转换过程尤为重要,"Surendranath 说。在制氢电解槽中,这种方法用于从水中去除质子,并在质子上添加电子以形成氢气。在燃料电池中,当质子和电子从氢气中移出并加入氧气形成水时,就会产生电能。施加电势会导致质子从氢离子(右图)转移到电极表面。利用具有分子定义质子结合位点的电极,麻省理工学院的研究人员为这些界面质子耦合电子转移反应建立了一个通用模型。图片来源:研究人员提供质子耦合电子转移在许多其他类型的化学反应中都很常见,例如二氧化碳还原(通过添加电子和质子将二氧化碳转化为化学燃料)。当质子接受体是分子时,科学家们可以精确控制每个分子的结构,并观察电子和质子如何在分子间传递,因此他们已经对这些反应的发生过程有了很多了解。然而,当质子耦合电子转移发生在电极表面时,这一过程就更难研究了,因为电极表面通常非常异质,质子有可能与许多不同的位点结合。为了克服这一障碍,麻省理工学院的研究小组开发出一种设计电极表面的方法,使他们能够更精确地控制电极表面的组成。他们的电极由石墨烯薄片组成,表面附着有机含环化合物。每个有机分子的末端都有一个带负电荷的氧离子,它可以接受周围溶液中的质子,从而使电子从电路流入石墨表面。Surendranath 说:"我们可以创造出一种电极,它不是由各种各样的位点组成,而是由单一类型的非常明确的位点组成的统一阵列,每个位点都能以相同的亲和力结合质子。由于我们拥有这些非常明确的位点,这让我们能够真正揭示这些过程的动力学"。利用这个系统,研究人员能够测量流向电极的电流,从而计算出平衡状态下质子向表面氧离子转移的速率质子向表面捐赠的速率和质子从表面转移回溶液的速率相等的状态。他们发现,周围溶液的 pH 值对这一速率有显著影响: 最高速率出现在 pH 值的两端酸性最强的 pH 值为 0,碱性最强的 pH 值为 14。为了解释这些结果,研究人员根据电极可能发生的两种反应建立了一个模型。在第一种反应中,强酸性溶液中高浓度的氢离子(H3O+)将质子传递给表面的氧离子,生成水。在第二种情况下,水将质子传递给表面氧离子,生成氢氧根离子(OH-),氢氧根离子在强碱性溶液中浓度较高。不过,pH 值为 0 时的速度比 pH 值为 14 时的速度快四倍,部分原因是氢离子释放质子的速度比水快。需要重新考虑的反应研究人员还惊奇地发现,这两个反应的速率并不是在中性 pH 值为 7(氢铵和氢氧根的浓度相等)时相等,而是在 pH 值为 10(氢氧根离子的浓度是氢铵的 100 万倍)时相等。该模型表明,这是因为涉及氢𬭩或水提供质子的前向反应比涉及水或氢氧化物去除质子的后向反应对总速率的贡献更大。研究人员说,关于这些反应如何在电极表面发生的现有模型假定,前向反应和后向反应对总速率的贡献相同,因此新发现表明,可能需要重新考虑这些模型。Surendranath说:"这是默认的假设,即正向和逆向反应对反应速率的贡献相同。我们的发现确实令人大开眼界,因为这意味着人们用来分析从燃料电池催化到氢进化等一切问题的假设可能是我们需要重新审视的。"研究人员目前正在利用他们的实验装置研究向电极周围的电解质溶液中添加不同类型的离子会如何加快或减慢质子耦合电子流的速度。刘易斯说:"通过我们的系统,我们知道我们的位点是恒定的,不会相互影响,因此我们可以读出溶液的变化对表面反应的影响。"编译自//scitechdaily ... PC版: 手机版:

封面图片

麻省理工学院发明防篡改 ID 标签:成本低、尺寸小、防伪强

麻省理工学院发明防篡改 ID 标签:成本低、尺寸小、防伪强 研究人员将微小的金属颗粒混合到粘贴标签的胶水中,然后使用太赫兹波检测这些颗粒在物体表面形成的独特图案。就像指纹一样,用于对物品进行身份验证。 商家可以在粘贴标签后进行初始读取,并将数据存储在云端,以后用于验证物品真伪。如果有人试图剥离标签并重新粘贴,就会破坏这种图案。 易碎贴 plus

封面图片

麻省理工学院的微观超材料可抵御超音速撞击

麻省理工学院的微观超材料可抵御超音速撞击 这就是麻省理工学院工程师在微观超材料实验中的发现这些材料是有意打印、组装或以其他方式设计的,其微观结构赋予了材料整体特殊的性能。在最近发表在《美国国家科学院院刊》上的一项研究中,工程师们报告了一种快速测试超材料结构阵列及其对超音速撞击的适应性的新方法。通过以超音速发射微粒子,麻省理工学院的工程师们可以测试各种超材料的弹性,这些超材料是由小到一个红血球的结构制成的。图为微粒子撞击超材料结构的四段视频截图。图片来源:研究人员提供在实验中,研究小组将印刷好的微小超材料晶格悬挂在微观支撑结构之间,然后以超音速向材料发射更微小的粒子。然后,研究小组利用高速摄像机以纳秒级的精度捕捉每次撞击及其后果的图像。他们的研究发现了一些超材料结构,与完全固态、非结构化的同类材料相比,它们更能抵御超音速撞击。研究人员说,他们在微观层面观察到的结果可以推广到类似的宏观冲击,从而预测新材料结构在不同长度尺度上如何抵御现实世界中的冲击。研究人员打印出错综复杂的蜂窝状材料,悬浮在相同材料的支撑柱之间(如图)。这种微观结构的高度相当于人类三根头发的宽度。图片来源:研究人员提供"我们正在学习的是,材料的微观结构很重要,即使在高速变形的情况下也是如此,"研究报告的作者、麻省理工学院机械工程系教授卡洛斯-波特拉(Carlos Portela)说。"我们希望找出抗冲击结构,将其制成涂层或面板,用于航天器、车辆、头盔以及任何需要轻质和保护的物体。"该研究的其他作者包括第一作者、麻省理工学院研究生托马斯-布特鲁伊尔(Thomas Butruille)和DEVCOM陆军研究实验室的约书亚-克龙(Joshua Crone)。纯粹的影响团队的新高速实验建立在之前工作的基础上,工程师们在实验中测试了一种超轻碳基材料的韧性。这种材料比人的头发丝还细,由微小的碳支柱和碳束制成,研究小组打印了这些碳支柱和碳束,并将其放置在玻璃载玻片上。然后,他们以超过音速的速度向材料发射微粒子。这些超音速实验表明,微结构材料能够承受高速撞击,有时能使微粒子偏转,有时则能捕获它们。Portela说:"但有许多问题我们无法回答,因为我们是在基底上测试材料,这可能会影响它们的行为。"麻省理工学院的工程师们捕捉到了微粒子通过精确设计的超材料发射的视频,其测量厚度比人的头发丝还细。图片来源:研究人员提供在他们的新研究中,研究人员开发了一种测试独立超材料的方法,以观察材料在没有背衬或支撑基底的情况下,自身如何承受撞击。在目前的设置中,研究人员将感兴趣的超材料悬挂在两根由相同基础材料制成的微型支柱之间。根据被测试超材料的尺寸,研究人员计算出两根支柱必须相距多远,才能在两端支撑材料,同时让材料对任何冲击做出反应,而不受支柱本身的影响,这样就能确保我们测量的是材料特性,而不是结构特性。研究小组确定了支柱支撑设计后,便开始测试各种超材料架构。对于每种结构,研究人员首先在一个小型硅芯片上打印出支撑柱,然后继续打印超材料作为柱子之间的悬浮层,在一个芯片上打印和测试数百个这样的结构。穿孔和裂缝研究小组打印出的悬浮超材料类似于错综复杂的蜂巢状截面。每种材料都印有特定的三维微观结构,如重复八面体或多面体多边形的精确支架。每个重复单元的大小与一个红血球相当。由此产生的超材料比人的头发丝还要细。随后,研究人员以每秒 900 米(每小时 2000 多英里)的速度 - 完全在超音速范围内向这些结构发射玻璃微粒子,测试每种超材料的抗冲击能力。他们用相机捕捉了每次撞击,并逐帧研究了生成的图像,以了解射弹是如何穿透每种材料的。接下来,他们在显微镜下检查了这些材料,并比较了每次撞击的物理后果。波特拉说:"在建筑材料中,我们看到了撞击后小圆柱形弹坑的形态。但在固体材料中,我们看到了许多径向裂缝和被刨出的大块材料"。总之,研究小组观察到,发射的粒子在晶格超材料上造成了小的穿孔,而材料却保持完好无损。与此相反,当以相同的速度将相同的粒子发射到质量相等的非晶格固体材料中时,它们会产生大裂缝,并迅速扩散,导致材料破碎。因此,微结构材料能更有效地抵御超音速撞击以及多重撞击。尤其是印有重复八面体的材料似乎最坚硬。意见和未来方向"在相同的速度下,我们看到八面体结构更难断裂,这意味着单位质量的超材料能够承受的冲击力是块状材料的两倍,"波特拉说。"这告诉我们,有一些结构可以使材料变得更坚硬,从而提供更好的冲击保护"。展望未来,该团队计划利用新的快速测试和分析方法来确定新的超材料设计,希望能标记出可升级为更坚固、更轻便的防护装备、服装、涂层和镶板的架构。波特拉说:"最让我兴奋的是,我们可以在台式机上进行大量这些极端实验。这将大大加快我们验证新型高性能弹性材料的速度。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院发现天气因素在引发"地震群"中起到的作用

麻省理工学院发现天气因素在引发"地震群"中起到的作用 研究人员最近在《科学进展》(Science Advances)杂志上发表的一项研究报告中指出,过去几年来,日本北部的暴雪和暴雨很可能是导致地震群发生的原因之一。这项研究首次表明,气候条件可能引发一些地震。研究报告的作者、麻省理工学院地球、大气和行星科学系助理教授威廉-弗兰克(William Frank)说:"我们看到,地表的降雪和其他环境负荷会影响地下的应力状态,而强降水事件的发生时间与地震群的开始时间密切相关。"因此,气候显然会对固体地球的反应产生影响,而这种反应的一部分就是地震。"新研究的重点是日本能登半岛正在发生的一系列地震。研究小组发现,该地区的地震活动与地下压力的某些变化惊人地同步,而且这些变化受到降雪和降水季节性模式的影响。科学家们怀疑,地震与气候之间的这种新联系可能并不是日本独有的,它可能会对世界其他地区产生影响。展望未来,他们预测,随着全球变暖,气候对地震的影响可能会更加明显。弗兰克补充说:"如果我们的气候正在发生变化,极端降水事件增多,而且我们预计大气、海洋和大陆中的水分将重新分配,这将改变地壳的负载方式。这肯定会产生影响,我们可以进一步探索其中的联系。"该研究的第一作者是麻省理工学院前助理研究员王庆宇(现就职于格勒诺布尔阿尔卑斯大学),其他作者还包括 EAPS 博士后崔昕、维也纳大学的卢洋、东北大学的广濑隆和东京大学的小原一成。自 2020 年末以来,数百次小地震震撼了日本能登半岛从日本本岛向北延伸至日本海的一块陆地。与典型的地震序列不同,能登的地震活动是一种"地震群"一种没有明显主震或地震触发因素的多次持续地震模式。麻省理工学院的研究小组与他们在日本的同事一起,旨在发现地震群中任何可以解释持续地震的模式。他们首先查阅了日本气象厅的地震目录,该目录提供了日本全国一段时间内的地震活动数据。他们重点研究了能登半岛在过去 11 年中发生的地震,在此期间,该地区经历了偶发性地震活动,包括最近的地震群。利用目录中的地震数据,研究小组统计了该地区随着时间推移发生的地震事件数量,发现 2020 年之前的地震发生时间显得零星而不相关,相比之下,2020 年晚些时候的地震强度更大,时间上也更集中,这标志着地震群的开始,地震之间存在某种关联。季节变化和地震反应科学家们随后查看了监测站在同一 11 年期间进行地震测量的第二个数据集。每个监测站都会持续记录发生的位移或局部震动。从一个监测站到另一个监测站的震动可以让科学家了解地震波在监测站之间传播的速度。这种"地震速度"与地震波穿过的地球结构有关。王利用台站测量数据计算出了过去 11 年中能登及其周边地区每个台站之间的地震速度。研究人员绘制了能登半岛地下地震速度的演变图,并观察到一个令人惊讶的模式:2020 年,也就是地震群被认为开始的时间前后,地震速度的变化似乎与季节同步。弗兰克说:"我们必须解释为什么会观察到这种季节性变化。"研究小组想知道,不同季节的环境变化是否会影响地球的底层结构,从而引发地震群。具体来说,他们研究了季节性降水如何影响地下"孔隙流体压力"地球裂缝中的流体在基岩中施加的压力大小。当下雨或下雪时,会增加重量,从而增加孔隙压力,使地震波的传播速度减慢。当所有的重量通过蒸发或径流被移走时,孔隙压力会突然减小,地震波的传播速度也会加快。研究人员建立了能登半岛的水文机械模型,以模拟过去 11 年中地下孔隙压力对降水季节性变化的响应。他们将同一时期的气象数据(包括日降雪量、降雨量和海平面变化的测量数据)输入模型。通过模型,他们能够追踪能登半岛地下过剩孔隙压力在地震群发生前和发生期间的变化。然后,他们将孔隙压力变化的时间表与地震速度的变化情况进行了比较。弗兰克说:"我们有地震速度观测数据,也有过剩孔隙压力模型,当我们把它们重叠在一起时,我们发现它们非常吻合。"特别是,他们发现,当加入降雪数据,尤其是极端降雪事件时,模型与观测数据之间的拟合度比只考虑降雨和其他事件时更高。换句话说,能登居民所经历的持续地震群在一定程度上可以用季节性降水,尤其是强降雪事件来解释。"我们可以看到,这些地震发生的时间与我们多次看到强降雪的时间非常吻合。这与地震活动密切相关。我们认为两者之间存在物理联系。"研究人员怀疑,大雪和类似的极端降水可能会在其他地方的地震中发挥作用,不过他们强调,主要的触发因素总是来自地下。"当我们首先想了解地震是如何发生的时候,我们就会想到板块构造,因为这是而且永远是发生地震的首要原因。但是,还有哪些因素会影响地震发生的时间和方式呢?这就是你开始考虑二阶控制因素的时候了,而气候显然是其中之一。"编译来源:ScitechDailyDOI: 10.1126/sciadv.ado1469 ... PC版: 手机版:

封面图片

麻省理工学院在有毒气体检测技术方面取得了突破性进展

麻省理工学院在有毒气体检测技术方面取得了突破性进展 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 新系统结合了两种现有技术,既保留了各自的优点,又避免了它们的局限性。研究小组使用了一种被称为金属有机框架(MOF)的材料,这种材料对微量气体非常敏感,但其性能很快就会退化,研究小组将其与一种聚合物材料相结合,这种材料非常耐用,更易于加工,但敏感性要低得多。麻省理工学院教授 Aristide Gumyusenge、Mircea Dinca、Heather Kulik 和 Jesus del Alamo、研究生 Heejung Roh 以及博士后 Dong-Ha Kim、Yeongsu Cho 和 Young-Moo Jo 今天在《先进材料》(Advanced Materials)杂志上发表了一篇论文,报告了这一研究成果。麻省理工学院的研究人员开发出一种探测器,可以低成本持续监测有毒气体的存在。研究小组使用了一种名为金属有机框架(MOF)的材料(图中为黑色晶格),这种材料对微量气体高度敏感,但其性能很快就会退化。他们将 MOF 与一种聚合物材料(如图中的茶色半透明链)相结合,这种材料非常耐用,但灵敏度要低得多。图片来源:研究人员提供MOFs多孔性强,表面积大,有多种成分。有些可能是绝缘体,但本研究中使用的 MOFs 具有很强的导电性。它们的形状像海绵,能有效捕捉各种气体分子,其孔隙的大小可以定制,使它们对特定种类的气体具有选择性。"论文的资深作者、材料科学与工程系 Merton C. Flemings 职业发展助理教授 Gumyusenge 说:"如果把它们用作传感器,只要气体对 MOF 的电阻率有影响,就能识别出气体是否存在。这些材料用作气体检测器的缺点是容易饱和,无法再检测和量化新输入的气体。"这不是你想要的。你想要的是能够检测和重复使用,"Gumyusenge 说。"因此,我们决定使用聚合物复合材料来实现这种可逆性。"研究小组使用了一类导电聚合物,Gumyusenge 和他的同事们之前已经证明,这类聚合物可以对气体做出反应,而不会与气体永久结合。"他说:"这种聚合物虽然没有 MOFs 那样的高表面积,但至少可以提供这种识别-释放型现象。研究人员在一个实验室规模的小型装置中展示了这种材料检测一氧化二氮(一种由多种燃烧产生的有毒气体)的能力。经过 100 次检测后,这种材料仍能保持其基线性能,误差在 5% 到 10% 之间,这证明了它具有长期使用的潜力。以下是传感装置的布局。图片来源:研究人员提供研究小组将液态溶液中的聚合物与粉末状的 MOF 材料结合在一起,然后将混合物沉积在基底上,干燥后形成一层均匀的薄涂层。他说:"通过将具有快速检测能力的聚合物和灵敏度更高的 MOF 以一比一的比例结合在一起,我们突然得到了一种传感器,它既具有 MOF 带来的高灵敏度,又具有聚合物带来的可逆性。"当气体分子暂时滞留在材料中时,材料的电阻会发生变化。只需安装一个欧姆表来跟踪电阻随时间的变化,就能持续监测这些电阻变化。Gumyusenge 和他的学生们在一个实验室规模的小型装置中演示了这种复合材料检测二氧化氮的能力。经过 100 次检测后,该材料仍能保持其基线性能,误差在 5% 到 10% 之间,证明了其长期使用的潜力。此外,研究小组报告说,这种材料的灵敏度远远高于目前使用的大多数二氧化氮检测器。这种气体经常在使用炉灶后被检测到。而且,由于这种气体最近与美国的许多哮喘病例有关,因此对低浓度的可靠检测非常重要。研究小组证明,这种新型复合材料可以可逆地检测到浓度低至百万分之二的气体。虽然他们的演示是专门针对二氧化氮的,但 Gumyusenge 说:"我们可以调整化学成分,使其针对其他挥发性分子,只要它们是小的极性分析物,这往往是大多数有毒气体"。除了与简单的手持式探测器或烟雾报警装置兼容之外,这种材料的一个优点是,聚合物使其能够沉积成极薄的均匀薄膜,而不像普通的 MOFs 通常是低效的粉末状。由于薄膜非常薄,因此所需的材料很少,生产材料成本可能很低;加工方法可以是典型的工业涂料加工方法。Gumyusenge说:"因此,限制因素可能是聚合物合成规模的扩大,我们一直在少量合成聚合物。"他说:"下一步将是在实际环境中对这些材料进行评估。例如,可以在烟囱或排气管上涂上这种材料,通过附带的电阻监测装置读取数据,对气体进行连续监测。在这种环境下,我们需要进行测试,以检查我们是否真正将其与实验室环境中可能忽略的其他潜在污染物区分开来。让我们把传感器放到真实世界的场景中,观察它们的效果如何"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人