近距离感应薄膜可让人们通过闪烁内容进行免触控交流

近距离感应薄膜可让人们通过闪烁内容进行免触控交流 佩戴者可以通过闪烁莫尔斯电码进行交流首先现在已经有了带电的"非接触式传感器",它们能够通过对磁场和/或电场的影响来探测附近物体的移动。尽管如此,这些装置往往难以制造,只能探测某些类型的物体,而且它们的电荷保持时间不长。它由三层透明材料组成:上面是氟化乙烯丙烯(FEP),中间是导电材料,下面是柔性弹性体基底。FEP 是一种被称为驻极体的材料,这意味着它在最初带电后会持续产生外部静电场,整个薄膜的厚度仅为 0.34 毫米。当任何类型的物体靠近它时,该物体上根深蒂固的静电荷就会与 FEP 的静电场相互作用,导致电流在薄膜的导电层中流动。通过分析电流强度,可以确定物体距离薄膜有多远。经过测试,该技术能够在 2 至 20 毫米(0.8 英寸)的距离内探测到玻璃、橡胶、铝和纸张制成的物体。此外,即使在近两个小时的时间里进行了 3000 多次接近/撤出循环后,它仍能保持足够的电荷量。在演示薄膜功能时,科学家们将其应用到一副眼镜的镜片上,通过佩戴者睫毛的伸缩来检测其眨眼。利用这一装置,测试者能够用摩尔斯电码眨出该大学的首字母 - E C U S T(华东理工大学)。这个演示表明,一旦得到进一步开发,这项技术可以让缺乏语言能力的人进行交流,也可以向司机发出昏昏欲睡时的警告,当然,它也可以用于免触式屏幕等界面。有关这项研究的论文最近发表在《ACS 应用材料与界面》(ACS Applied Materials & Interfaces)杂志上。 ... PC版: 手机版:

相关推荐

封面图片

科学家实现钙钛矿单晶薄膜技术突破 晶体生长周期缩短至1.5天

科学家实现钙钛矿单晶薄膜技术突破 晶体生长周期缩短至1.5天 据介绍,金属卤化物钙钛矿是一类光电性质优异、可溶液制备的新型半导体材料,在太阳能电池、发光二极管和辐射探测器等领域有重要应用。目前,这些器件主要采用多晶薄膜为光活性材料,其表界面悬挂键、不饱和键等缺陷将显著降低器件性能和使用寿命。单晶薄膜材料本体不含有晶界等缺陷,是制备光电子器件的理想候选材料,但如何可控、低温合成该类材料仍是该领域所面临的主要挑战。官方资料显示,单晶材料生长涉及到成核、溶解、传质、反应等多个过程。对钙钛矿单晶而言,其生长过程中的控制步骤仍不明确。研究团队采用原位显微观测、胶体扩散吸光度测试、核磁共振扩散序谱等手段,定量化分析了钙钛矿前驱体溶液中的溶质扩散过程,同时结合分子动力学和数值仿真,证实了物质传递过程是钙钛矿单晶薄膜生长的决速步骤。随后,研究团队开发了以二甲氧基乙醇为代表的高通量单晶生长溶液体系,通过多官能团配位作用细化前驱体胶束尺寸,将前驱体体系的扩散系数由1.7×10-10 m2 s-1提高至5.4×10-10 m2 s-1,从而使得单晶薄膜的生长速率提高约3倍,制备环境温度普遍降低了30℃~60℃。例如,在70℃下,甲胺铅碘单晶薄膜的生长速度可达到8.0 µm min-1,在一个结晶周期内单晶薄膜尺寸可达2 cm。研究团队进一步证实了该单晶薄膜生长技术的普适性,实现了30余种厘米级单晶薄膜的低温、快速、高通量生长方法。另外,该晶体生长技术可抑制单晶薄膜中的晶格缺陷形成,制备单晶薄膜的载流子迁移率高达160 cm2 V-1 s-1、扩散长度超80 µm,这些物理性质参数达到了目前商业化晶硅半导体材料水平。以制备的单晶薄膜为活性层的辐射探测器件,在零偏压模式下的灵敏度高达到1.74×105 µC Gy−1 cm−2,并在英寸级像素阵列化器件中展示出优异的空间尺度上一致性,实现了自供电模式下大面积复杂物体的X射线成像。这项工作阐明了钙钛矿单晶薄膜的晶化机理,为新一代的高性能光电器件提供了丰富的材料库。据悉,相关成果发表于国际知名学术期刊《自然-通讯》。 ... PC版: 手机版:

封面图片

伯克利实验室开发的新型微型电容器显示出创纪录的能量和功率密度

伯克利实验室开发的新型微型电容器显示出创纪录的能量和功率密度 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 微型电容器技术的突破劳伦斯伯克利国家实验室(伯克利实验室)和加州大学伯克利分校的科学家们在克服这些挑战方面迈出了重要一步,最近在微型电容器中实现了创纪录的高能量和高功率密度。这些电容器由氧化铪和氧化锆的工程薄膜制成,采用了芯片制造中常见的材料和制造技术。他们的研究成果发表在《自然》(Nature)杂志上,可彻底改变下一代电子产品的片上能量存储和电力传输。伯克利实验室资深科学家、加州大学伯克利分校教授兼项目负责人赛义夫-萨拉赫丁(Sayeef Salahuddin)表示:"我们已经证明,在由工程薄膜制成的微型电容器中存储大量能量是可能的,比普通电介质存储的能量要多得多。更重要的是,我们使用的材料可以直接在微处理器上进行加工。"这项研究是伯克利实验室为开发更高效的微电子学新材料和新技术所做的更广泛努力的一部分。在三维沟槽电容器结构中使用工程氧化铪/氧化锆薄膜制成的微型电容器与现代微电子中使用的结构相同实现了创纪录的高能量存储和功率密度,为片上能量存储铺平了道路。图片来源:Nirmaan Shanker/Suraj Cheema电容器基础知识与挑战电容器是电路的基本元件之一,但也可用于储存能量。与通过电化学反应储存能量的电池不同,电容器通过在两块被绝缘材料隔开的金属板之间建立的电场储存能量。在需要时,电容器可以快速放电,从而可以快速供电。此外,电容器不会因反复充放电循环而老化,因此寿命比电池长很多。不过,电容器的能量密度通常比电池低得多,这意味着它们在单位体积或重量上可存储的能量更少,而当试图将它们缩小到微型电容器大小用于片上能量存储时,这个问题只会变得更糟。Sayeef Salahuddin(左)和 Nirmaan Shanker 在实验室。图片来源:Marilyn Sargent/伯克利实验室研究方法和结果研究人员通过精心设计HfO2-ZrO2薄膜来实现负电容效应,从而制造出革命性的微型电容器。通常情况下,将一种介电材料层叠在另一种介电材料之上会导致整体电容降低。但是,如果其中一层是负电容材料,那么整体电容实际上会增加。在早先的研究中,萨拉赫丁及其同事展示了利用负电容材料生产晶体管的方法,这种晶体管的工作电压大大低于传统的 MOSFET 晶体管。在这里,他们利用负电容生产出了能够存储更多电荷的电容器,因此也存储了更多能量。这些薄膜由HfO2和ZrO2混合制成,采用工业芯片制造的标准材料和技术进行原子层沉积。根据这两种成分的比例,薄膜可以是铁电性的,即晶体结构具有内置的电极化;也可以是反铁电性的,即通过施加电场可以使晶体结构进入极化状态。当成分调整得恰到好处时,给电容器充电产生的电场会使薄膜在铁电和反铁电秩序之间的临界点达到平衡,这种不稳定性会产生负电容效应,即使很小的电场也能轻易地使材料极化。萨拉赫丁课题组的博士后、论文的主要作者之一苏拉杰-切马(Suraj Cheema)说:"在相变过程中,单元格确实希望被极化,这有助于在电场作用下产生额外的电荷。这种现象是负电容效应的一个例子,但可以把它看作是一种捕获比正常情况下更多电荷的方法。"为了提高薄膜的储能能力,研究小组需要增加薄膜厚度,同时又不使其松弛出受挫反铁电-铁电状态。他们发现,通过在每隔几层HfO2-ZrO2 后穿插原子级氧化铝薄层,可以将薄膜厚度增加到 100 纳米,同时保持所需的特性。最后,研究人员与麻省理工学院林肯实验室的合作者合作,将薄膜集成到三维微型电容器结构中,在硅片上切割的深沟中生长精确分层的薄膜,长宽比高达 100:1。这些三维沟槽电容器结构可用于当今的 DRAM 电容器,与平面电容器相比,其单位面积电容要高得多,从而实现了更大的微型化和设计灵活性。由此产生的器件具有破纪录的特性:与当今最好的静电电容器相比,这些微型电容器的能量密度高出 9 倍,功率密度高出 170 倍(分别为 80 mJ-cm-2 和 300 kW-cm-2)。萨拉赫丁说:"我们获得的能量和功率密度远远高于我们的预期。多年来,我们一直在开发负电容材料,但这些结果令人十分惊讶。"未来发展方向这些高性能微电容器有助于满足物联网传感器、边缘计算系统和人工智能处理器等微型设备对高效、微型化能源存储日益增长的需求。研究人员目前正在努力扩大技术规模,将其集成到全尺寸微芯片中,并推动基础材料科学的发展,以进一步提高这些薄膜的负电容。"有了这项技术,我们终于可以开始实现在芯片上无缝集成极小尺寸的能量存储和电力传输,"Cheema 说。"它可以开辟微电子能源技术的新领域。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

将肉与金属可逆结合的工艺可能有多种用途

将肉与金属可逆结合的工艺可能有多种用途 科学家利用电粘合力将生鸡肉和番茄(如图)等软材料可逆地粘合到锡、铅和石墨等硬材料上 改编自 ACS Central Science 2024,DOI:10.1021/acscentsci.3c01593简单地说,电粘合是指电流通过两个物体后,两个物体在静电或化学作用下相互粘合在一起的现象。即使在电流消失后,它们仍能保持粘合状态,但如果遇到极性相反的电流,则会完全分离。近年来,从爬墙机器人到软体机器人抓手,我们已经看到了电粘合技术的应用。虽然其中一些应用涉及将坚硬的材料粘合到柔韧的材料上,但很少有应用涉及将未经改变的坚硬材料粘合到真正"软而易碎"的材料上。事实上,电粘合技术最常用于软对软和硬对硬的粘合。这就是新研究的意义所在。在 Srinivasa Raghavan 教授的领导下,马里兰大学的一个研究小组已经能够将锡、铅和石墨等硬质材料电粘合到水果、蔬菜和生鸡肉等非常软的材料上。在一个案例中,在一个丙烯酰胺凝胶圆筒和一块石墨板上施加 5 伏的电流约 3 分钟后,两者粘合得非常牢固,以至于当有人试图把它们拉开时,凝胶没有分开,而是撕裂了。不过,当电流极性反转时,这两种材料很容易就能无损地分离开来。这种工艺甚至可以用来连接和释放水下物体。不过,并非任何物质的组合都能奏效。研究发现,硬质材料必须能够传导离子,而软质材料必须含有盐离子。科学家们认为,当两种材料交换离子时,就会形成化学键导电率低的金属(如钛)不起作用,含盐量低的软材料(如葡萄)也不起作用,这些事实都支持了这一假设。一旦对这一过程有了更好的理解并进一步开发,它不仅能用于植入物,还能用于生物混合机器人和性能更好的电池等应用。有关这项研究的论文最近发表在《美国化学学会中心科学》(ACS Central Science)杂志上。 ... PC版: 手机版:

封面图片

工程师们制造出充电速度比锂离子电池快一亿倍的Cheema电容器

工程师们制造出充电速度比锂离子电池快一亿倍的Cheema电容器 电容器由介电材料制成并在电场中存储能量。与利用化学反应来储存能量的电池相比,它们非常耐用,可以提供高功率水平和快速充电。但电容器的能量密度(在给定面积内可以存储的能量)通常远低于电池。这使得将它们缩小到芯片尺寸变得特别具有挑战性。一个工程师团队通过采用复合材料中出现的一些奇怪的电子特性来解决这个限制。他们制作了氧化铪和氧化锆的复合薄膜,该薄膜表现出自发电极化。一些区域是铁电性的,所有偶极子都指向相同的方向,而另一些区域是反铁电性的,偶极子指向多个方向,因此这些区域无法存储电荷。当对这些材料施加电场时,反铁电区域会转变,变成铁电体,并且薄膜可以存储大量电荷比严格的铁电材料多得多。麻省理工学院的材料科学家Suraj Cheema表示,这种所谓的负电容效应意味着“你可以获得更多的电荷存储”。Cheema 是加州大学伯克利分校电气工程和计算机科学教授Sayeef Salahuddin博士后期间开发新型微电容器设备的团队的一员。但仅靠负电容不足以制造具有高能量密度的微电容器这些层只有 2 纳米厚。该团队必须弄清楚如何使这些薄膜更厚,同时保持其负电容背后的独特晶体结构。他们能够通过分层一些非晶态氧化铝来构建 100 纳米厚的电容器。该中断层从每个覆盖层中“隐藏”介电材料的结构,确保整个材料保持正确的晶体结构。为了在不增加面积的情况下进一步提高这些设备的能量密度,研究人员使用了当今 DRAM 单元电容器中常见的设计。这些 3D 结构是在硅芯片表面挖出的 U 形沟槽。该设计在给定的占地面积内包含了更多的电荷存储材料。沟槽电容器可以通过原子层沉积(ALD)来制造。该技术与半导体制造兼容,但很难扩大规模,为电动汽车等产品制造更大的电容器。Cheema 表示,微型电容器每平方厘米可存储 80 毫焦耳的能量,仅比锂离子电池小一个数量级。但是,虽然微型电池在高端只能充电 1,000 次,但这些微型电容器可以充电数十亿次。Cheema 说,它们的充电速度快了一亿倍。“这是一种智能工程方法,导致能量密度取得重大进步,”未参与这项工作的德雷克塞尔大学材料科学家尤里·戈戈西 (Yury Gogotsi)说道。他后来在电子邮件中补充道,“考虑到每部手机中约有 1,000 个多层陶瓷片式电容器,一辆汽车中约有 3,000 至 8,000 个,这项技术的影响可能非常重大。”就目前的形式而言,该技术可用于增加 DRAM 中的电荷存储。这些设备还可用于使电源更接近计算机芯片上的处理器,从而节省目前在运输过程中损失的能源。如果电容器可以按比例放大,它们可以在机器人和手机等大型设备中得到应用。Cheema 目前正在利用麻省理工学院林肯实验室的设施,将这些单独的微电容器连接起来,制造更大的能量存储设备。能量密度可以用平方厘米来测量,但到目前为止他们只制造了 50 微米 x 1 微米的设备。 ... PC版: 手机版:

封面图片

可重构晶体管可通过编程执行不同功能

可重构晶体管可通过编程执行不同功能 研究人员解释说,射频晶体管是电子电路和芯片设计技术的重大突破。可编程晶体管使用的材料与半导体工业使用的材料相同,即硅和锗,它们可以显著改善功耗和能效。传统的晶体管开发包括化学掺杂,这是一种用外来原子"污染"半导体材料的技术。掺杂过程决定了电流的流动方向,一旦晶体管被制造出来就无法改变。射频晶体管用静电掺杂取代了化学掺杂,这是一种不会永久改变半导体材料化学结构的新方法。一旦电场取代了"复杂而昂贵"的化学掺杂过程,晶体管就可以动态地重新配置,以执行不同的逻辑运算。维也纳工业大学教授沃尔特-韦伯(Walter M. Weber)说,重配置工作在"基本开关单元",而不是将信息路由到固定的功能单元。韦伯补充说,这种方法对于构建未来的可重构计算和人工智能应用"大有可为"。研究人员于 2021 年开发出了 RFET 基本技术,现在他们已经证明可重写晶体管可用于构建芯片中的所有基本逻辑电路。最近发表的研究报告展示了一种反相器、NAND/NOR 和 XOR/XNOR 门,它们能够在运行时动态切换工作模式。静电掺杂所需的额外栅极需要占用空间,这意味着 RFET 并不像标准 CMOS 晶体管那么小。新的可编程晶体管不可能很快取代固定晶体管,但它们可以共存,并为某些灵活性至关重要的计算应用提供动力。研究人员解释说,RFET 的可重构特性可以减少逻辑电路所需的晶体管总数。更少的晶体管意味着制造芯片所需的空间更小,功耗也会降低。通过切换单个晶体管或整个电路的极性,单个电路可以提供多种功能。 ... PC版: 手机版:

封面图片

能源科学家解释了导致金薄膜光致发光的量子力学效应

能源科学家解释了导致金薄膜光致发光的量子力学效应 1969 年,科学家们发现所有金属都会在一定程度上发光,但在这之后的数年中,人们一直未能清楚地了解这种现象是如何发生的。在纳米级温度测绘和光化学应用的推动下,人们对这种发光现象重新产生了兴趣,并再次围绕其起源展开了讨论。但直到现在,答案仍不明确。工程学院能源技术纳米科学实验室(LNET)主任 Giulia Tagliabue 说:"我们开发出了非常高质量的金属金膜,这使我们处于一个独特的位置来阐明这一过程,而不受以往实验的干扰因素影响。"在最近发表于《光:科学与应用》(Light:Science and Applications)的研究中,Tagliabue 和 LNET 团队将激光束聚焦在极薄(介于 13 纳米和 113 纳米之间)的金膜上,然后分析了由此产生的微弱光晕。他们的精确实验所产生的数据是如此详细,又是如此出人意料,以至于他们与巴塞罗那科技学院、南丹麦大学和美国伦斯勒理工学院的理论家合作,重新研究并应用量子力学建模方法。光致发光是由电子及其带相反电荷的对应物(空穴)在光的作用下的特定行为方式所决定的。这也让他们首次在金中建立了关于这种现象的完整、完全定量的模型,该模型可应用于任何金属。Tagliabue 解释说,研究小组利用一种新型合成技术生产的单晶金薄膜,研究了金属越来越薄时的光致发光过程。她说:"我们观察到某些量子力学效应在高达约 40 纳米的薄膜中出现,这出乎我们的意料,因为对于金属来说,通常要到 10 纳米以下才会出现这种效应。"这些观测结果提供了有关金中光致发光过程确切发生位置的关键空间信息,而这正是将金属用作探针的先决条件。研究的另一个意外成果是发现金的光致发光(Stokes)信号可用于探测材料自身的表面温度,这对从事纳米级研究的科学家来说是一大福音。"对于金属表面的许多化学反应,人们一直在争论这些反应发生的原因和条件。温度是一个关键参数,但在纳米尺度测量温度非常困难,因为温度计会影响测量结果。因此,利用材料本身作为探针来探测材料具有巨大的优势,"Tagliabue 说。研究人员相信,他们的发现将使人们能够利用金属对化学反应,尤其是涉及能源研究的化学反应获得前所未有的详细了解。金和铜(LNET 的下一个研究目标)等金属可以引发某些关键反应,比如将二氧化碳(CO2)还原成太阳能燃料等碳基产品,太阳能燃料可以将太阳能储存在化学材料中。该研究的第一作者、LNET 博士后艾伦-鲍曼(Alan Bowman)说:"为了应对气候变化,我们将需要以某种方式将二氧化碳转化为其他有用化学物质的技术。使用金属是一种方法,但如果我们不能很好地了解这些反应是如何在其表面发生的,那么我们就无法对其进行优化。发光为了解这些金属中发生的情况提供了一种新方法"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人