冷冻阻断麻疹低温电子显微镜的突破性发现

冷冻阻断麻疹低温电子显微镜的突破性发现 研究人员准确揭示了中和抗体是如何阻止麻疹病毒感染的,并正在利用这些知识开发新的疫苗和治疗方法,通过阻止麻疹病毒与人体细胞的融合过程来抑制麻疹病毒。他们利用低温电子显微镜观察到了一种名为 mAb 77 的抗体是如何阻断这种融合的,从而获得了同样适用于其他致命病毒的见解。这项研究表明,mAb 77 有可能成为预防或治疗麻疹的鸡尾酒疗法的一部分,尤其是在易感人群中。当麻疹病毒遇到人类细胞时会发生什么?病毒机制以适当的方式展开,揭示出使其自身与宿主细胞膜融合的关键部分。一旦融合过程完成,宿主细胞就完了。它现在属于病毒了。麻疹研究和疫苗开发的进展拉霍亚免疫学研究所(LJI)疫苗创新中心(Center for Vaccine Innovation)的科学家们正在努力开发能够阻止这种融合过程的新型麻疹疫苗和疗法。研究人员最近利用一种名为冷冻电子显微镜的成像技术,以前所未有的细节展示了一种强效抗体如何在病毒完成融合过程之前就将其中和。研究人员捕捉到了与麻疹融合糖蛋白(绿色)结合的新型中和抗体(蓝色)的结构。这种抗体产生了一种独特的中和机制,通过基于细胞的测定和结构生物学的结合得到了解释。资料来源:Dawid Zyla, LJI"这项研究令人兴奋的地方在于我们捕捉到了融合过程的快照,"LJI 教授、总裁兼首席执行官 Erica Ollmann Saphire 博士解释说,她与哥伦比亚大学儿科病毒分子发病机制教授 Matteo Porotto 博士共同领导了这项科学研究。"这一系列图像就像一本翻书,我们看到了融合蛋白展开过程的快照,但随后我们又看到抗体在完成融合过程的最后阶段之前将其锁定在一起。我们认为其他针对其他病毒的抗体也会做同样的事情,但以前还没有这样的图像。"事实上,这项工作的重要性可能超越麻疹。麻疹病毒只是副黏液病毒家族中的一员,该家族还包括致命的尼帕病毒。尼帕病毒的传染性较低,但造成的死亡率却比麻疹高得多。"我们所了解到的融合过程对尼帕病毒、副流感病毒和亨德拉病毒都有医学意义,"该研究的第一作者、LJI 博士后研究员 Dawid Zyla 博士说,"这些都是具有大流行潜力的病毒。"麻疹治疗的迫切需要麻疹是一种高度传染性的空气传播疾病,儿童往往是重灾区。尽管在疫苗接种方面做了大量工作,但该病毒仍然是一个重大的健康威胁。根据世界卫生组织和美国疾病控制中心的数据,2022 年麻疹在全球造成约 13.6 万人死亡,最近在美国十几个州也爆发了麻疹疫情。受害者大多是未接种疫苗或接种疫苗不足的五岁以下儿童。"麻疹造成的儿童死亡人数比任何其他疫苗可预防疾病都多,它也是已知传染性最强的病毒之一,"Saphire 说。Zyla 解释说,面临风险的不仅仅是幼儿。"Zyla说:"目前的疫苗效果很好,但孕妇或免疫系统受损的人不能接种。研究第一作者、LJI 博士后研究员 Dawid Zyla 博士 资料来源:Matthew Ellenbogen目前还没有治疗麻疹的特效药,因此研究人员正在寻找抗体,作为预防严重疾病的紧急疗法。为了更好地了解麻疹病毒是如何与细胞融合的,LJI 团队使用了一种名为 mAb 77 的抗体。研究人员发现,mAb 77 的靶标是麻疹融合糖蛋白,它是麻疹病毒通过一种叫做融合的特殊过程进入人体细胞的机器。mAb 77 能否作为治疗麻疹的抗体?为了找出答案,珞珈山国际学院的科学家们研究了这种抗体究竟是如何对抗病毒的。LJI 团队需要设计出一种麻疹融合糖蛋白一种无害的病毒片段足够稳定,可以用冷冻电子显微镜成像。为此,Zyla 与哥伦比亚大学 Porotto 实验室的科学家密切合作。波罗托的研究小组在一种攻击人们中枢神经系统的麻疹变种中发现了一些奇怪的突变。这种变异病毒的融合糖蛋白结构中存在一些薄弱环节。为了弥补这一缺陷,病毒进化出了特殊的稳定变异。波罗托说:"病毒必须发生变异才能进入大脑,但这时它需要这些稳定变异来弥补。"得益于哥伦比亚大学的这些发现,Zyla 有了一个简便的蓝图,可以利用这些相同的稳定突变来设计一种融合糖蛋白。这种新的融合糖蛋白可以在细胞培养中大量生产,而且足够坚固,可用于结构研究。Zyla说:"我们获得了极高的糖蛋白产量,这也使我们能够进行结构生物学、生物化学和生物物理研究。"接下来,研究人员开始借助 LJI 冷冻电镜核心捕捉图像。新图像显示了融合糖蛋白与 mAb 77 的"复合体"。研究人员发现,mAb 77 能在融合过程的中间阶段阻止病毒此时融合糖蛋白已经完成了部分"折叠",形成了完成膜融合的正确构象。最后,研究人员终于弄清了 mAb 77 是如何将融合糖蛋白的碎片锁在一起以防止病毒感染的。既然知道了 mAb 77 的作用原理,研究人员希望这种抗体能作为鸡尾酒疗法的一部分,用于预防麻疹或治疗活动性麻疹感染者。在一项后续实验中,研究人员发现,在棉鼠感染麻疹病毒的模型中,mAb 77 能显著预防麻疹。棉鼠在暴露于麻疹病毒之前接受了 mAb 77 的预处理,其肺部组织没有出现感染或感染迹象有所减少。展望未来,Saphire 和 Zyla 有兴趣研究不同的麻疹抗体。Zyla说:"我们希望在过程的不同阶段停止融合,并研究其他治疗机会。"Zyla 还计划继续与哥伦比亚大学的麻疹研究人员密切合作。LJI的结构生物学专业知识与哥伦比亚大学的细胞生物学和病毒学专业知识相结合,是推进这个项目的关键。编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

DNA诱饵在突破性疫苗方法中战胜病毒

DNA诱饵在突破性疫苗方法中战胜病毒 这种疫苗已在小鼠身上进行了试验,它由一个 DNA 支架组成,支架上有许多病毒抗原的拷贝。这种疫苗被称为微粒疫苗,模仿病毒的结构。以前大多数微粒疫苗的研究工作都依赖于蛋白质支架,但这些疫苗中使用的蛋白质往往会产生不必要的免疫反应,从而分散免疫系统对目标的注意力。在小鼠研究中,研究人员发现 DNA 支架不会诱发免疫反应,从而使免疫系统能够将抗体反应集中在目标抗原上。麻省理工学院生物工程学教授马克-巴特(Mark Bathe)说:"我们在这项工作中发现,DNA 不会诱发抗体,以免分散对相关蛋白质的注意力。可以想象的是, B 细胞和免疫系统正在接受目标抗原的全面训练,而这正是你想要的让免疫系统激光聚焦于感兴趣的抗原。"研究人员说,这种能强烈刺激 B 细胞(产生抗体的细胞)的方法能让人们更容易开发出针对艾滋病、流感以及 SARS-CoV-2 等难以针对的病毒的疫苗。与受到其它类型疫苗刺激的 T 细胞不同,这些 B 细胞可以持续数十年,提供长期保护。哈佛大学医学院副教授、拉贡研究所首席研究员丹尼尔-凌伍德说:"我们有兴趣探索是否能让免疫系统产生更高水平的免疫力,以抵御流感、艾滋病毒和SARS-CoV-2等传统疫苗方法所抵御的病原体。这种将针对目标抗原的反应与平台本身脱钩的想法是一种潜在的强大免疫学技巧,现在我们可以利用它来帮助这些免疫学靶向决策朝着更有针对性的方向发展"。Bathe、Lingwood和哈佛大学医学院副教授、拉贡研究所首席研究员亚伦-施密特(Aaron Schmidt)是这篇论文的资深作者,论文今天(1月30日)发表在《自然-通讯》(Nature Communications)杂志上。论文的主要作者包括麻省理工学院前博士后艾克-克里斯蒂安-瓦姆霍夫、拉贡研究所博士后拉兰斯-隆萨、哈佛大学前研究生贾里德-费尔德曼、麻省理工学院研究生格兰特-克纳普和哈佛大学前研究生布莱克-豪瑟。微粒疫苗通常由一种蛋白质纳米粒子组成,其结构与病毒相似,可携带许多病毒抗原拷贝。这种高密度的抗原能产生比传统疫苗更强的免疫反应,因为人体认为它与真正的病毒相似。目前已开发出针对乙型肝炎和人类乳头瘤病毒等少数病原体的微粒疫苗,而针对 SARS-CoV-2 的微粒疫苗也已获准在韩国使用。这些疫苗尤其擅长激活 B 细胞,使其产生针对疫苗抗原的特异性抗体。Bathe说:"免疫学领域的许多人都对微粒疫苗非常感兴趣,因为它们能产生强大的体液免疫,也就是基于抗体的免疫,它有别于基于T细胞的免疫,而mRNA疫苗似乎能更强烈地激发T细胞免疫。"不过,这种疫苗的一个潜在缺点是,用于支架的蛋白质通常会刺激人体产生针对支架的抗体。巴特说,这会分散免疫系统的注意力,使其无法如愿启动强有力的反应。他说:"中和 SARS-CoV-2 病毒需要一种疫苗以产生针对病毒尖峰蛋白受体结合域部分的抗体。当在基于蛋白质的微粒上显示这种抗体时,免疫系统不仅能识别受体结合域蛋白质,还能识别与试图引起的免疫反应无关的所有其他蛋白质。"另一个潜在的缺点是,如果同一个人接种了不止一种由相同蛋白支架携带的疫苗,例如接种了 SARS-CoV-2 疫苗,然后又接种了流感疫苗,那么他们的免疫系统很可能会立即对蛋白支架产生反应,因为他们已经做好了对蛋白支架产生反应的准备。这可能会削弱对第二种疫苗所含抗原的免疫反应。Bathe说:"如果想应用这种基于蛋白质的微粒来免疫不同的病毒(如流感),那么免疫系统就会沉迷于它已经看到并产生免疫反应的底层蛋白质支架。这可能会降低机体对实际抗原的抗体反应质量。"作为一种替代方法,Bathe 的实验室一直在开发使用 DNA 折纸制作的支架,这种方法可以精确控制合成 DNA 的结构,并允许研究人员在特定位置附着各种分子,如病毒抗原。在2020 年的一项研究中,巴特和麻省理工学院生物工程及材料科学与工程教授达雷尔-欧文(Darrell Irvine)发现,携带 30 个艾滋病毒抗原拷贝的 DNA 支架可以在实验室培育的 B 细胞中产生强烈的抗体反应。这种结构是激活 B 细胞的最佳选择,因为它与纳米级病毒的结构非常相似,而纳米级病毒的表面会显示许多病毒蛋白的拷贝。Lingwood说:"这种方法建立在B细胞抗原识别的基本原理基础之上,即如果对抗原进行阵列显示,就能促进B细胞的反应,提高抗体输出的数量和质量。"在新的研究中,研究人员换用了由 SARS-CoV-2 原始菌株中尖峰蛋白的受体结合蛋白组成的抗原。在给小鼠注射疫苗时,他们发现小鼠对尖峰蛋白产生了高水平的抗体,但对DNA支架却没有产生任何抗体。与此相反,以一种名为铁蛋白的支架蛋白为基础、涂有 SARS-CoV-2 抗原的疫苗产生了许多针对铁蛋白和 SARS-CoV-2 的抗体。"DNA 纳米粒子本身没有免疫原性,"Lingwood 说。"使用基于蛋白质的平台会对平台和感兴趣的抗原产生同样高滴度的抗体反应,这会使重复使用该平台变得复杂,因为身体会对它产生高亲和力的免疫记忆"。减少这些脱靶效应还有助于科学家们实现开发一种疫苗的目标,这种疫苗可以诱导针对任何变异的 SARS-CoV-2 甚至所有冠状病毒的广泛中和抗体,而冠状病毒是包括 SARS-CoV-2 以及导致 SARS 和 MERS 的病毒在内的病毒亚属。为此,研究人员正在探索一种附有多种不同病毒抗原的 DNA 支架能否诱导出针对 SARS-CoV-2 和相关病毒的广泛中和抗体。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

疫苗研发新突破 保护免疫力低下者免受未接种疫苗者的伤害

疫苗研发新突破 保护免疫力低下者免受未接种疫苗者的伤害 由于接种了疫苗,麻疹于 2000 年被宣布在美国绝迹。现在,麻疹又卷土重来,而且来势汹汹。根据美国疾病控制和预防中心(CDC)的数据,截至 2024 年 6 月 27 日,美国 23 个州共报告了159 例麻疹病例。在这些病例中,84%的患者未接种疫苗或疫苗接种情况"未知";11%的病例接种过一剂疫苗,5%的病例接种过两剂疫苗。近一半(46%)的病例发生在五岁以下的儿童身上。美国并不是唯一面临麻疹复发的国家。在全球范围内,2023年的麻疹病例比上一年增加了 79%。为什么会这样?麻疹病例上升的唯一原因是疫苗接种率下降,损害了群体免疫力。虽然这可以部分归因于 COVID-19 大流行所造成的破坏,但现实情况是,由于反疫苗接种运动,大流行只是加剧了已经出现的下降趋势。现在,由哥伦比亚大学和拉荷亚免疫学研究所领导的一个研究小组找到了一种应对全球麻疹复发的新方法。他们的方法不依赖于使用活病毒,可以保护那些特别容易感染麻疹并将其传染给他人的人。"关于疫苗的错误信息导致世界许多地区疫苗接种不足,"该研究的共同通讯作者、哥伦比亚大学病毒分子发病机理教授 Matteo Porotto 说。"随着越来越多免疫力低下的人无法接种活病毒疫苗,麻疹有了更多传播的机会。"麻疹是世界上传染性最强的病毒之一,美国疾病预防控制中心建议,如果一个人得了麻疹,附近十个人中多达九个人如果没有得到保护都会被感染。最好的保护措施是接种麻疹、腮腺炎和风疹(MMR)疫苗,它能提供持久的保护。接种一剂疫苗对预防麻疹的有效率约为 93%;接种两剂疫苗的有效率约为 97%。泛美卫生组织(PAHO)指出,在美国,第一剂麻疹腮腺炎风疹疫苗的接种率多年来一直在 90% 以上,直到 2019 年才降至 97%,2022 年又降至 85%。为预防麻疹爆发,理想的接种率应在 95% 以上。麻疹也不是无害的皮疹和发烧,几天后就会痊愈;它可能引起严重的并发症,危及生命,包括失明、肺炎和脑部炎症。未接种疫苗的幼儿、孕妇和免疫力低下的人尤其容易感染。免疫力低下的人不能接种目前含有弱化麻疹病毒的活疫苗,因为他们最终可能会感染麻疹。他们处于一种两难的境地:免疫力低下会增加感染麻疹的风险,但由于免疫系统受损,他们又不能接种疫苗。麻疹病毒颗粒的三维图形,显示血凝素蛋白(栗色)和融合蛋白(灰色)。CDC/Allison M. Maiuri, MPH, CHES为了解决这个问题以及麻疹复发的更大问题,研究人员研究了使用活病毒的替代方法。麻疹病毒依赖于其膜上携带的两种蛋白质:血凝素和融合蛋白,血凝素能帮助病毒附着在细胞上,而融合蛋白则能使病毒与细胞融合,从而引发感染。目前的疫苗主要是使人体产生针对血凝素的抗体,而研究人员则把重点放在了另一种重要的病毒亚基上,创造了一种针对融合蛋白的抗体,阻止它与细胞膜融合。在研究过程中,研究人员探讨了治疗麻疹并发症(脑炎或脑部炎症)的方法,这种并发症往往是致命的。他们注意到,这种病症的特点是麻疹病毒变异,其融合蛋白发生了改变。研究人员利用低温电子显微镜(cryo-EM)获得了一系列抗体与病毒相互作用的快照。Porotto说:"我们发现,我们的抗体能结合蛋白质的融合前状态,但并不能完全阻止蛋白质发挥作用。"抗体附着在蛋白质上后,蛋白质转变为中间状态,开始将病毒与细胞膜融合。但这一过程并没有完成,这意味着感染被阻止了。研究人员说,这种中间状态的作用机制使得抗体非常有效,而更好地了解这种机制则为开发新型疫苗和抗病毒药物铺平了道路。由于亚单位疫苗不包含整个病毒,因此对免疫力低下的人来说是安全的。目前,研究人员正在测试一套新型稳定麻疹融合蛋白作为亚单位疫苗的有效性和安全性,该疫苗适用于免疫力低下的人群和接种过疫苗但免疫力下降的人群。这项研究发表在《科学》杂志上。 ... PC版: 手机版:

封面图片

科学家发现一种研发疫苗的更好方法

科学家发现一种研发疫苗的更好方法 促进血细胞产生针对特定病毒蛋白的抗体是开发人用疫苗的重要一步。这对研究人员来说具有挑战性,因为受试者是否产生抗体取决于科学家如何设计和施用抗原,抗原是他们为测试疫苗有效性而施用的病毒的一部分。病毒研究的一个非常重要的方面是如何表达和纯化用于疫苗接种的抗原。用制备好的抗原对动物进行免疫,动物会产生针对抗原的特异性抗体。但科学家必须分离抗原,以确保他们开发的疫苗能够针对他们希望防治的特定疾病。一旦研究人员纯化了抗原,他们就能研制出疫苗,引导受试者产生所需的抗体。但在尝试开发实验室生产的抗原时,这种分离工作尤其耗时,因为病毒通常会迅速变异。科学家可能需要数周时间才能开发出正确的抗原。科学家们开发出了一种诱导目标特异性免疫反应的新方法。通过将抗原蛋白融合到一种源于四泛蛋白的锚膜结合蛋白中,研究人员创造出了主要显示在人体细胞表面的融合蛋白。载体蛋白将蛋白质暴露在细胞表面,诱导产生针对适当、相关抗原的抗体。另外一个优点是,这些抗原与病毒中的相应蛋白质具有相同的构象和修饰,因为它们是由与病毒自然感染的人体细胞相似的细胞制造的。这种新的显示技术有可能成为一种更可靠的免疫技术。在这项研究中,研究人员能够诱导出针对不同蛋白质的抗体,重点是导致 2019 年冠状病毒病(COVID-19)的SARS-CoV-2 病毒的受体结合域。开发出的锚蛋白使科学家们能够针对特定疾病进行免疫,而无需纯化抗原。研究人员深信,这项技术可以大大加快免疫过程。论文作者之一丹尼尔-伊万诺维奇(Daniel Ivanusic)说:"这项工作基于 SARS-CoV-2 的受体结合结构域,仅仅是一项非常有趣的免疫技术的开端。对我们来说,采用 tANCHOR 技术最具挑战性、最重要也最令人兴奋的应用是诱导针对 HIV-1 的中和抗体。我认为这将是一项伟大的工作!"编译自/scitechdaily ... PC版: 手机版:

封面图片

研究人员通过低温电子显微镜揭示了复制酶的原子结构

研究人员通过低温电子显微镜揭示了复制酶的原子结构 图中显示的是一种被认为与生命起源有关的 RNA 聚合酶核糖酶。图中的核糖酶被冰冻起来,象征着它是如何被及时冷冻以进行成像的,以及它是如何在冰冷的条件下发挥最佳作用的。黄/红光突出显示了活性位点,透明显示了模板-产物螺旋的拟议位置。图片来源:Rune Kidmose错综复杂的生命分子机制是如何从简单的起点产生的,这是一个长期存在的问题。一些证据表明,在原始的"RNA 世界"中,"RNA 复制机"(即所谓的复制酶)开始复制自身和其他 RNA 分子,从而启动了进化和生命本身。然而,古老的复制酶似乎已经消失在时间的长河中,它在现代生物学中的作用已被更高效的蛋白质机器所取代。为了支持"RNA 世界"假说,研究人员一直试图在实验室中重新创造出一种等效的 RNA 复制酶。虽然已经发现了这种古代复制酶的分子"二重身",但由于难以确定动态 RNA 分子的结构,它们的详细分子结构和作用方式仍然难以确定。嗜冰 RNA 复制酶的结构在发表于《美国国家科学院院刊》(PNAS)的一篇研究论文中,一个研究小组首次利用低温电子显微镜(cryo-EM)报告了 RNA 复制酶的原子结构。正在研究的 RNA 复制酶是由 Holliger 实验室(英国剑桥大学 MRC LMB)开发的,能够在共晶冰相(类似于冰渣)中利用核苷酸三联体高效复制长模板。现任奥胡斯大学助理教授的 Emil L. Kristoffersen 从霍利格实验室博士后学习归来后,促成了与安德森实验室(丹麦奥胡斯大学)的合作,通过低温电子显微镜确定了 RNA 复制酶的结构。有趣的是,该结构与基于蛋白质的聚合酶有着惊人的相似之处,其模板结合、聚合和底物分辨结构域的分子形状类似于一只张开的手。"我们惊讶地发现,我们在试管中人工进化出的核糖酶竟然具有天然存在的蛋白质聚合酶的特征。"英国剑桥大学 MRC LMB 项目负责人 Philipp Holliger 解释说:"这表明,无论材料是 RNA 还是蛋白质,进化都能发现趋同的分子解决方案。"RNA 世界中的 RNA 合成模型为了更好地了解 RNA 复制酶的工作原理,研究人员进行了全面的突变研究,以突出 RNA 结构的关键要素。这项分析证实了催化位点的特征,同时也揭示了两个所谓的"接吻环"相互作用的重要性,这两个相互作用将支架亚基和催化亚基结合在一起,同时也揭示了一个特定的RNA结构域对保真度的重要性,即复制酶复制RNA链的准确性。虽然研究人员无法确定复制酶在积极复制 RNA 时的"作用中"结构,但他们还是建立了一个与所有实验数据相一致的基于 RNA 的 RNA 复制模型。"冷冻电镜是研究 RNA 分子结构和动态特征的一种强大方法。通过将低温电子显微镜数据与实验相结合,我们能够建立这种复杂的 RNA 机器内部运作的模型。"Ewan McRae 告诉我们,他在奥胡斯大学安德森实验室做博士后时曾从事过低温电子显微镜工作,现在已经在美国得克萨斯州休斯顿卫理公会研究所成立了自己的研究小组。RNA 纳米技术和医学的灵感来源这项研究令人兴奋地首次看到了被认为位于生命之树根部的 RNA 复制酶。然而,目前开发的基于 RNA 的复制酶效率很低(与基于蛋白质的聚合酶相比),还不能维持自身的复制和进化。这项研究提供的结构洞察力可能有助于设计更高效的复制机制,从而让我们更接近在试管中开发 RNA 世界的情景。"通过使用可能存在于 RNA 世界中的化学修饰,RNA 复制酶的特性可能会得到进一步改善。"丹麦奥胡斯大学副教授 Ebbe Sloth Andersen 解释说:"此外,对生命起源的研究还发现了几种新型 RNA 构建模块,可用于新兴的 RNA 纳米技术和医学领域。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

实验性抗体药物可预防甚至逆转糖尿病发病

实验性抗体药物可预防甚至逆转糖尿病发病 贝塔细胞中的 mAb43(黄色)。资料来源:约翰霍普金斯大学医学院Dax Fu实验室当患者的免疫系统开始攻击胰腺中的β细胞时,就会发生 1 型糖尿病。这些重要的细胞能产生胰岛素,如果没有它们,患者就无法控制血糖水平,导致终生需要注射胰岛素和潜在的健康并发症。但在一项新的研究中,约翰霍普金斯大学医学院的科学家们发现了一种潜在的方法,可以预防疾病的发生,甚至在早期阶段逆转疾病。这种新药被称为 mAb43,是一种单克隆抗体,是一种实验性疗法,在治疗一系列疾病方面显示出前景。抗体是一种蛋白质,能与某些细胞(通常是外来病原体)结合,将其清除出体外。疫苗的作用是引导病人的免疫系统产生针对特定目标的抗体。单克隆抗体被设计用于对抗目标,并作为对急性疾病(如感染)的快速反应批量输送给病人。在最近针对疟疾、COVID-19 甚至类风湿性关节炎的研究中,这些疗法都显示出了良好的前景。mAb43 能与β细胞表面的一种小蛋白结合,然后像"盾牌或斗篷"一样将它们隐藏起来,避免受到免疫细胞的攻击。如果定期服用,这种疗法似乎可以保护β细胞,进而保护患者产生胰岛素的能力。即使已经出现了一些损伤,防护罩也会让贝塔细胞得到休息,使它们能够再生。研究人员在64只饲养的易患1型糖尿病的小鼠身上测试了这种治疗方法。小鼠在10周大时开始接受每周一次的mAb43注射,35周后,所有小鼠均未患糖尿病。耐人寻味的是,有一只小鼠在开始接受抗体治疗前出现了早期症状,之后暂时患上了糖尿病,但在35周后也没有患上糖尿病。所有服用了 mAb43 的小鼠在 75 周的实验期结束时都还活着,而这正是小鼠的大部分寿命。这比对照组小鼠的寿命要长得多。对照组小鼠有糖尿病,但没有接受药物治疗,只能活18到40周。仔细观察后,研究小组发现,在小鼠开始接受抗体治疗后,免疫细胞从β细胞中撤退,该区域的炎症也有所减轻。β细胞甚至开始缓慢繁殖。这项研究的作者德维-卡西纳坦(Devi Kasinathan)说:"mAb43与胰岛素疗法相结合,有可能在β细胞再生的同时逐渐减少胰岛素的使用,最终不再需要补充胰岛素来控制血糖。"最近另一种名为替普利珠单抗的单克隆抗体疗法在三期临床试验中显示出了良好的前景,它的作用是靶向免疫细胞,减少免疫细胞对β细胞的损害。然而,mAb43 似乎能在更长的时间内发挥这种作用,甚至有可能在整个服药期间发挥这种作用。研究小组说,由于抗体对β细胞具有很强的选择性,因此长期使用这种疗法似乎是安全的,而且副作用很小。现阶段,这项研究只在小鼠身上使用了一种小鼠抗体,但研究小组计划下一步开发出人类版本的抗体,然后再进行临床试验。但仍有一个重大障碍单克隆抗体的价格昂贵,难以普及。希望更多的研究能帮助降低成本。这项研究发表在《糖尿病》杂志上。 ... PC版: 手机版:

封面图片

艾滋病毒疫苗取得突破:抗体有效地保护了创新研究中的动物

艾滋病毒疫苗取得突破:抗体有效地保护了创新研究中的动物 HIV-1 病毒颗粒(红色)从慢性感染的 H9 细胞(蓝色)的一个片段中萌发和复制的透射电子显微照片。颗粒处于不同的成熟阶段;弧形/半圆形是开始形成的不成熟颗粒,但仍是细胞的一部分。未成熟颗粒的形态会慢慢转变为成熟形态,并表现出典型的"圆锥形或球形核心"。图片拍摄于马里兰州德特里克堡的 NIAID 综合研究设施(IRF)。图片来源:NIAID这些抗体一种人类广谱中和抗体和两种从以前接种过疫苗的猴子身上分离出来的抗体靶向融合肽,这是艾滋病病毒表面蛋白上的一个位点,有助于病毒与细胞融合并进入细胞。这项发表在《科学转化医学》(Science Translational Medicine)上的研究由美国国立卫生研究院(National Institutes of Health)下属的国立过敏与传染病研究所(National Institute of Allergy and Infectious Diseases,NIAID)疫苗研究中心(Vaccine Research Center,VRC)领导。以融合肽为靶标的抗体可以在体外(即在活体之外的试管或培养皿中)中和多种艾滋病病毒株。NIAID VRC 从一名捐献血液样本用于研究的 HIV 感染者身上分离出了一种融合肽定向人类抗体,名为 VRC34.01。他们还从猕猴体内分离出了两种抗体猕猴的免疫系统与人类类似猕猴曾接受过一种疫苗治疗,这种疫苗旨在产生融合肽定向抗体。证明这些抗体能保护动物将验证融合肽是人类疫苗设计的目标。SHIV 挑战向猕猴注射感染剂量的 SHIV是一种广泛用于评估 HIV 抗体和疫苗性能的动物模型。实验结果和影响在这项研究中,四组猕猴分别接受一种抗体2.5或10毫克/千克体重剂量的VRC34.01,或两种疫苗诱导的猕猴抗体中的一种的单次静脉输注,其他猴子则接受安慰剂输注。为了确定抗体的保护作用,每只猴子在输液五天后都要接受一株已知对融合肽导向抗体敏感的SHIV的挑战。所有输注安慰剂的猴子在接受挑战后都感染了SHIV。在接受 VRC34.01 输注的猴子中,接受 10 毫克/千克剂量输注的猴子中没有一只感染SHIV,接受 2.5 毫克/千克剂量输注的猴子中有 25% 感染了 SHIV。在接受疫苗诱导的猕猴抗体的猴子中,没有接受名为DFPH-a.15抗体的猴子感染SHIV,而接受名为DF1W-a.01抗体的猴子中有25%感染了SHIV。随着时间的推移,接受DFPH-a.15抗体的动物血液中的抗体浓度有所下降。这些动物在30天后再次接受挑战,以观察较低浓度的抗体是否降低了保护效果,结果有一半的动物感染了SHIV。所研究的三种抗体都能对 SHIV 产生统计学意义上的保护作用,而且这种作用与剂量有关,即血液中抗体浓度越高的猴子的保护作用越强。研究成果有助于研制有效的艾滋病毒疫苗作者称,这些发现证明了融合肽引导的抗体可以提供对SHIV的保护,并有助于确定疫苗需要产生多大浓度的抗体才能起到保护作用。他们认为,他们在一些动物体内发现的疫苗诱导抗体支持了进一步设计以融合肽为目标的预防性艾滋病疫苗概念的工作。研究人员总结说,针对艾滋病病毒融合肽的有效艾滋病病毒疫苗很可能需要扩展本研究中使用的概念,产生多种融合肽定向抗体。这将使疫苗更有可能在流通的多种艾滋病病毒变种中保持预防效果。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人