深圳湾公园发现动物界的“活化石”:鲎

深圳湾公园发现动物界的“活化石”:鲎 据“科普中国”介绍,鲎属于剑尾目,家族非常古老,可以追溯到四亿多年前的奥陶纪,现存有美洲鲎、中国鲎、南方鲎、圆尾鲎四种,当前中国鲎和圆尾蝎鲎被列入中国《国家重点保护野生动物名录》,均为国家二级保护野生动物。长久以来,这种动物都不是人类的食物,毕竟长得实在太另类了,还流蓝色的血,自然就会被据而远之,关于它的研究也少之又少。然而随着科技的发展,在20世纪中叶,美国医学家发表论文证实细菌感染会使鲎血凝固,从此以后,这种动物的命运就被改变了,连带着也改变了人类的命运。据了解,鲎的血细胞含有一种特殊的蛋白质,遇到内毒素就会固化成凝胶状,因此鲎血遇到细菌的内毒素就会凝固,起到阻挡细菌,避免感染的作用。当年美国医生发现这种现象后,就从鲎血种提炼出蛋白质,制成药品,用来检测内毒素和病菌,这就是很多人都听过的鲎试剂,灵敏又便捷,所以很快就推广开来,促进人类医学的快速发展,间接拯救了万千生命。然而由于需求量非常大,这也给鲎带来了灭顶之灾,在我国,广西北部湾是中国鲎分布的核心区,上世纪90年代,在繁殖季能观察到60~70万对鲎,2019年仅剩4万对。也就是在那年,中国鲎被定为国家二级保护动物,各界也关注到了这种古老的物种,经过多年努力,鲎的数量、生存环境有了显著的改善。爬满海滩的鲎 ... PC版: 手机版:

相关推荐

封面图片

地球唯一蓝血生物 曾经救人无数 现在却濒临灭绝

地球唯一蓝血生物 曾经救人无数 现在却濒临灭绝 鲎如何改变人类命运鲎属于剑尾目,这个家族非常古老,可以追溯到四亿多年前的奥陶纪,被称为活化石。现存有美洲鲎、中国鲎、南方鲎、圆尾鲎四种。鲎的头部由一块又大又圆的甲壳覆盖,腹部则是一块略呈三角形,边缘有刺的小甲壳,身下有六对腿,还有一条长尾巴,造型十分科幻,仿佛太空战舰。最怪的一点是,鲎的血是蓝色,这是因为它的血用血蓝蛋白运输氧气,我们的血红蛋白里含有铁,血蓝蛋白则含有铜。自古以来,人们并不太注意这类不好吃(鲎血含铜所以有毒,但还是有人吃它的肉)又其貌不扬的动物。直到 1956 年,美国医学家弗雷德里克·巴里·邦(Frederik B. Bang)发表论文,证明细菌感染会使鲎血凝固,自此,鲎的命运改变了,人类的命运也改变了。许多细菌的细胞壁里都含有称为内毒素(Endotoxin)的物质。内毒素并不是细菌分泌出来毒我们的,但我们的免疫系统接触到它,会产生可能致命的激烈反应。鲎的血细胞含有一种特殊的蛋白质,遇到内毒素就会固化成凝胶状。因此鲎血遇到细菌的内毒素就会凝固,起到阻挡细菌,避免感染的作用。965 年,弗雷德里克·巴里·邦从鲎血中提取出蛋白质,制成药品,用来检测内毒素和病菌。这种药物后来被称为鲎试剂(Limulus amebocyte lysate)。鲎试剂检测细菌既灵敏又便捷,很快推广开来。目前在中国,《中国药典》里有 300 多种注射药剂要用到鲎试剂, 2000 多家药品和医疗器械企业在使用鲎试剂,每年的试剂产量超过一千万支。鲎种群面临危机鲎试剂为人类带来福音,也为鲎带来灭顶之灾。人们开始大批捕捉野生鲎,刺穿心包(包裹心脏的包囊)引出天蓝色的鲜血,作为制药原料。用于制作鲎试剂的主要是中国鲎和美洲鲎。从 2004 年到 2017 年,美洲鲎的捕捉数量从 33 多万只上升到 57 多万只。新冠疫情爆发后,各国紧锣密鼓研究新冠疫苗,对鲎试剂的需求也随之膨胀,在席卷全球的大疫中,鲎用鲜血维护我们每个人的安全,而代价是这个比恐龙还要古老的家族日益消亡。美国对于一只鲎要“献”多少血缺乏标准,如果放掉 10%~30% 的血,鲎的死亡率是 8% ,放掉 40% 的血,死亡率飙升到 29% 。此外,美国捕鲎放血的时间是 5~7 月,此时是鲎上岸产卵的时期(比较好捉)。这样不仅干扰了鲎的繁殖,因为天气炎热,鲎血的血蓝蛋白浓度会下降,运输氧气的能力降低,导致鲎被放血之后更易死于缺氧。2015~2021 年,美国海岸的鲎卵数量下降到上世纪 80 年代的十五分之一。广西北部湾是中国鲎分布的核心区,上世纪 90 年代,在繁殖季能观察到 60~70 万对鲎,2019 年,仅剩 4 万对。除了制作鲎试剂,人们还会捕捉鲎作为鱼饵和传统食品。填海造陆、滨海工程会破坏鲎的栖息地。疏浚河道和填海导致水流和水深改变,废水和暴雨会更容易在鲎生活的海中引发富营养化。全球变暖也在破坏鲎的生存环境。鲎数量下降,危及的不仅是人类,因为鲎在生态系统中具有关键作用。在北美大西洋沿岸,美洲鲎卵是许多候鸟如红腹滨鹬的美食。候鸟只能携带有限的脂肪作为迁徙的能量。它们饿得太瘦,支撑不住的时候,就必须要落下来吃东西增肥。这样,在红腹滨鹬的迁徙途中,产卵的美洲鲎,发挥了加油站的作用,让无数的鸟赖以生存。大自然与人类紧密相关鲎面临的危机,只是自然界的一个缩影。我们不仅从大自然中获得食物、空气与水,也获得救死扶伤的材料。在亿万年的生存竞争中,生物打磨出了无数具有特异用途的化学分子。而这些分子就可能成为药物的原材料。美国 FDA 到 2006 年为止的 25 年间,认证了 1200 种新药,其中约 2/3 是生物产生的分子或衍生物。这方面最典型的例子是抗癌药紫杉醇(Taxol),产自红豆杉属树木的树皮。在美国西北太平洋地区,太平洋红豆杉一直被伐木工视为“无用的树”,直到紫杉醇横空出世。所以我们对自然和生物的了解,往往是很浅薄的,不能轻率地下结论说一种东西“没有用”。跟鲎一样,对紫杉醇的需求严重打击了红豆杉种群。幸而红豆杉叶子能提取出一种类似紫杉醇的物质,可以人工合成紫杉醇,叶子可以再生,红豆杉逃脱一劫。生物产生的药物例子不胜枚举。芋螺分泌的 Ω-芋螺毒素(Omega-contoxin)对神经钙通道有高度特异性,可以镇痛,也可以保护神经细胞存活。巴西蝮蛇的毒素能够抑制让血管收缩的酶,起到降血压的作用。一种学名 Agelas dendromorpha 的海绵,会产生名为 Agelastatin A 的生物碱,被视为很有潜力的抗癌新药。人类对药物的需求,也在鲸吞蚕食着各种生物的种群。世界自然基金会估计,药用植物总共约 5 万种,其中超过 2/3 是野外采集,四千到一万种可能已经濒危。所有生物构成的生物圈,在更加广大的尺度上,影响着我们的健康。最简单的例子包括湿地生物净化水源,植物减少沙尘、吸收有害气体等等。还有一些更加曲折微妙的影响。传播疟疾的按蚊,喜欢在光照充足的水坑里繁殖,砍伐森林会增加照在地面的阳光,按蚊数量增加,进一步造成疟疾爆发。美国的森林破碎化导致食肉动物减少,白足鼠和花鼠因为没有了天敌而大量繁殖,这些鼠类携带的蜱虫,会传染一种由伯氏疏螺旋体引发的莱姆病。值得注意的是,生态系统损害对人类健康造成的不利后果,往往不成比例地由贫穷的人承担。日益加剧的环境破坏和生物灭绝,正让他们的处境雪上加霜。还好人类虽然愚蠢,但并非不会反思。鲎救人无数,如今人们也开始觉醒,为拯救鲎而努力。2019 年,中国鲎被定为国家二级保护动物。鲎产卵很多,但存活率极低,广西北部湾大学经过多年努力,终于研究出了鲎的增殖放流技术,把鲎卵养成小鲎再放回海里,存活率就会提高很多。新加坡国立大学的 Jeak Ling Ding 运用转基因技术,让其他生物生产鲎的蛋白质,开发出了不用鲎血的新试剂。如果这种药物能得以顺利推广的话,数以十万计的鲎有望摆脱“血光之灾”。最后,我想用晚清笔记小说《清稗类钞》里的一个故事作为本文结尾:乾隆年间,某地海水泛滥,一对鲎落到了岸上,乡人用车送它们回海,鲎向西叩首而没。清朝人对自然的认知有限,他们虽不知道鲎对人的功用,但这个故事里透露出的对生命的尊重,值得今天的我们一再回味。 ... PC版: 手机版:

封面图片

深圳湾惊现动物界的「活化石」鲎,它有哪些特性?为啥血液是蓝色的?via 知乎热榜 (author: 艾比斯)

封面图片

科学家发现的伞状蛋白质能靶向杀死特定细菌 有望治疗耐药性感染

科学家发现的伞状蛋白质能靶向杀死特定细菌 有望治疗耐药性感染 伞状抗菌毒素颗粒飘向细菌靶细胞并与之接触。这些毒素来自链霉菌,能有效抑制同属竞争物种的生长。资料来源:Angela Gao抗生素与细菌战具有讽刺意味的是,临床上使用的许多抗生素都直接来源于细菌在自然栖息地中用来对付对方的分子,或受到这些分子的启发。链丝菌用来对付竞争对手的化学武器是此类分子最丰富的来源之一。其中包括常见的广谱药物链霉素。这些新发现的抗菌毒素的不同之处在于,与链丝菌的小分子抗生素不同,伞状毒素是由多种蛋白质组成的大型复合物。与小分子抗生素相比,它们针对细菌的特异性也更强。《自然》论文的作者推测,伞状毒素的这些特性解释了为什么在对链丝菌产生的毒素进行长达 100 多年的研究中,这些毒素一直没有被发现。生物信息学和低温电子显微镜揭示新观点编码伞状毒素的基因最初是通过生物信息学搜索新的细菌毒素而发现的。在华盛顿大学医学院约瑟夫-穆格斯(Joseph Mougous)微生物实验室的赵琴琴领导的生化和遗传实验中,科学家们了解到这些毒素与其他蛋白质结合成一个大型复合体。这些蛋白质复合物的冷冻电子显微镜由 Young Park 在华盛顿大学医学院生物化学教授、霍华德-休斯医学研究所研究员 David Veesler 的实验室中完成。这些研究表明,秦琴分离出的毒素复合物具有与在西雅图发现的毒素复合物相称的醒目外观。它们看起来像雨伞。独特的结构和特异性华大医学院微生物学教授、霍华德-休斯医学研究员穆格斯指出:"这些微粒的形状非常奇特,在未来的工作中,了解它们不同寻常的形态如何帮助它们消灭目标细菌将是一件非常有趣的事情。"随后,科学家们试图确定这些毒素的靶标,他们筛选了这些毒素对所有生物的影响,从真菌到 140 种不同的细菌,包括研究作者德文-科尔曼(Devin Coleman)在加州大学伯克利分校和美国农业部农业研究服务处的实验室中从高粱植物中提取的一些细菌。.在这些潜在的对手中,这些毒素专门针对自己的同类:其他链丝菌。"我们认为,这种精湛的特异性可能是由于组成伞辐条的蛋白质各不相同。"研究报告的作者、穆格斯实验室的资深科学家布鲁克-彼得森(S. Brook Peterson)评论说:"这些蛋白质可能会吸附在竞争细菌表面的特定糖分上。"通过分析数千个公开的细菌基因组,研究报告的作者、圣路易斯大学的张大鹏(Dapeng Zhang)和他的研究生谭英俊(Youngjun Tan)发现,许多其他种类的细菌也有制造伞状颗粒毒素的基因。有趣的是,这些物种都形成了枝状菌丝,这在细菌中是一种不常见的生长模式。潜在的临床应用和更广泛的影响除了伞状毒素颗粒的基础生物学方面还有许多问题有待解答外,穆格斯和他的同事们对其潜在的临床应用也很感兴趣。他们怀疑导致肺结核和白喉的细菌可能对伞状毒素敏感。他们注意到这些细菌已经对传统抗生素产生了抗药性。科学家们认为,伞状毒素颗粒有可能制服这些严重的致病细菌,因此值得研究。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

12月8日发布,广州,网友发现动物园一条鳄鱼瘦得皮包骨,看起来像活化石。

12月8日发布,广州,网友发现广州动物园一条鳄鱼瘦得皮包骨,看起来像活化石。 广州动物园工作人员表示,关于这条鳄鱼的情况,已经反馈至园内负责的部门已在处理此事。 网友:动物园园长一定很胖!-电报频道- #娟姐新闻:@juanjienews

封面图片

新研究发现了噬菌体破坏细菌防御系统的一种新方法

新研究发现了噬菌体破坏细菌防御系统的一种新方法 一项突破性研究揭示了噬菌体蛋白的新调控机制,为了解细菌防御机制和开发基于噬菌体的疗法开辟了新途径。新发现推动了抗击危险细菌的重大进展。由奥塔哥大学的彼得-菲纳兰教授领导的一个国际科学家小组研究了噬菌体(一种感染细菌的病毒)所使用的一种特殊蛋白质。对细菌和噬菌体之间这种微观军备竞赛的研究非常重要,因为它可以开发出抗生素的替代品。这项研究发表在著名的国际期刊《自然》(Nature)上,分析了噬菌体在部署抗CRISPR时使用的一种蛋白质,这是它们阻断细菌CRISPR-Cas免疫系统的方法。领衔作者、奥塔哥微生物学和免疫学系的尼尔斯-伯克霍尔茨(Nils Birkholz)博士说,了解噬菌体如何与细菌相互作用,是在人类健康或农业领域利用噬菌体对付细菌病原体的道路上迈出的重要一步。"具体来说,我们需要了解细菌用来保护自己免受噬菌体感染的防御机制,如CRISPR,这与我们利用人体免疫系统抵御病毒的方式并无二致,以及噬菌体如何抵御这些防御机制。例如,如果我们知道噬菌体是如何杀死特定细菌的,这就有助于确定适当的噬菌体作为抗菌剂使用。更具体地说,我们必须了解噬菌体在感染后是如何控制它们的反防御武器库(包括抗CRISPR)的我们必须了解噬菌体是如何调控在与细菌的战斗中有用的基因的表达的。"这项研究揭示了噬菌体在部署抗CRISPRs时需要多么谨慎。一种特定的噬菌体蛋白质有一个在许多参与基因调控的蛋白质中非常常见的部分或结构域;众所周知,这个螺旋-翻转-螺旋(HTH)结构域能够特异性地结合DNA序列,并根据具体情况打开或关闭基因。这种蛋白质的 HTH 结构域用途更为广泛,并表现出一种以前未知的调控模式。它不仅能利用这个结构域结合 DNA,还能结合其RNA转录物,RNA转录物是 DNA 序列和其中编码的抗CRISPR 之间的中介分子。由于这种蛋白质参与调节抗CRISPR的产生,这意味着这种调节具有更多层次它不仅通过DNA结合机制发生,还通过我们发现的结合信使RNA的新机制发生。这一发现可能会对基因调控的理解产生重大影响。"在了解噬菌体如何躲避 CRISPR-Cas 的防御并在一系列应用中杀死目标细菌方面,揭示这种意想不到的复杂调控机制是一项重要进展。这一发现尤其令科学界振奋,因为它展示了一个经过深入研究的蛋白质家族的新型调控机制。HTH 结构域自 20 世纪 80 年代初被发现以来就一直受到深入研究,因此我们最初认为我们的蛋白质会像其他具有 HTH 结构域的蛋白质一样发挥作用,但当我们发现这种新的作用模式时,我们感到非常惊讶。这一发现有可能改变该领域对这一重要而广泛的蛋白质结构域的功能和机制的看法,并可能对我们理解基因调控产生重大影响。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

科学家们合成95Mat5抗体 接近研制出单一、通用的抗蛇毒血清

科学家们合成95Mat5抗体 接近研制出单一、通用的抗蛇毒血清 澳大利亚、亚洲和非洲尤其是许多致命毒蛇的栖息地。据估计,每年有多达 138000 人因被毒蛇咬伤而丧生,另有 400000 或更多的人留下终身残疾。现在,斯克里普斯研究所的科学家们发现了一种抗体,这种抗体可以阻断这些国家中的一些蛇类产生的一种主要毒素的致命作用。这项研究的通讯作者之一约瑟夫-雅尔丁(Joseph Jardine)说:"这种抗体可以对抗众多蛇类中的一种主要毒素,这种毒素每年导致数万人死亡。这对中低收入国家的人们来说可能非常有价值,因为这些国家因被蛇咬伤而造成的伤亡人数最多。"目前大多数蛇毒抗蛇毒血清都来自马和羊等供体动物。将少量毒液注射到动物体内,使其免疫系统产生反应并释放抗体,这些抗体被提取并纯化为医药级抗蛇毒血清。除了与使用捐献动物(和蛇)相关的伦理问题外,这些往往能挽救生命的抗蛇毒血清在注射时还会引起极度过敏反应。因此,研究人员开始着手解决这些局限性。研究人员比较了各种眼镜蛇的毒液蛋白质,发现所有眼镜蛇毒液中都含有一种蛋白质 - 三指毒素(3FTx),不同种类的眼镜蛇毒液中含有相似的部分。3FTx蛋白"超家族"具有不同的作用;其中许多具有神经毒性,可导致全身瘫痪。随后,研究人员开始寻找能够阻断这种蛋白质的抗体。研究人员将 16 种不同的 3FTx 基因植入哺乳动物细胞,然后在实验室中产生毒素。他们参考了一个由 500 多亿种合成人类抗体组成的抗体库,测试了哪些抗体能与银环蛇(又称中国或台湾银环蛇)的蛋白质结合,这种蛋白质与其他 3FTx 蛋白最相似。他们将搜索范围缩小到大约 3800 种抗体,并测试这些抗体是否能识别其他四种 3FTx 变体。结果有 30 种可以识别。在这 30 个变体中,在所有变体中相互作用最强的是一种名为 95Mat5 的抗体。当给小鼠注射银环蛇、印度眼镜蛇、黑曼巴和眼镜王蛇的毒素时,在所有情况下,啮齿动物不仅免于死亡,还免于瘫痪。研究人员在调查这种抗体为何如此有效时发现,它模仿了 3FTx 通常与之结合的人类蛋白质的结构。由于 95Mat5 是一种合成(单克隆)抗体,因此生产抗蛇毒血清既不需要供体动物,也不需要蛇。Jardine 说:"令人兴奋的是,我们可以完全通过人工合成的方法制造出有效的抗体我们没有对任何动物进行免疫,也没有使用任何蛇类。"虽然这种抗体能有效对抗眼镜蛇毒中的神经毒素,但研究人员强调,这种抗体本身并不是万能的抗蛇毒血清。蛇毒是一种复杂的鸡尾酒毒液,通用抗蛇毒血清需要添加针对几大类毒液的抗体,包括在眼镜蛇体内发现的其他3FTx蛋白群和蝰蛇体内常见的毒素,这正是研究人员目前正在努力的方向。研究人员说:"因此,最终的通用抗蛇毒血清可能至少需要四到五种抗体,才能有效覆盖更多的毒液类别。95Mat5的发现和开发是开发基于单克隆的通用抗蛇毒血清的重要的第一步,因为它能有效中和蛇毒中最多样、毒性最强的成分之一。"这项研究发表在《科学转化医学》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人