天文测量工具能用于识别深度伪造

天文测量工具能用于识别深度伪造 研究人员正在利用天文测量工具帮助确定图像的真实性使用通常用于调查遥远星系的方法分析人脸图像,可以测量一个人的眼睛如何反射光,从而发现图像处理的迹象。AI 的进步使得区分真实图像、视频和音频与算法生成的图像、视频、音频变得越来越困难。深度伪造技术将一个人或环境的特征替换为另一个人或环境的特征,专家警告称,这可以被武器化,并用于传播错误信息,例如在选举期间。研究人员解释说,真实的照片应该具有“一致的物理特性”,“所以你在左眼球中看到的反射应该与在右眼球中见到的反射非常相似,尽管不一定完全相同”。这些差异是微妙的,因此为了检测它们,研究人员转向了旨在分析天文图像中的光的技术。通过比较个人眼球中的光反射,他们可以在大约 70% 的情况下正确预测图像是否为假的。 via Solidot

相关推荐

封面图片

Epsilon Indi"星震"打破天文纪录和预期

Epsilon Indi"星震"打破天文纪录和预期 国际研究合作测量工作是由一个国际团队完成的,该团队由葡萄牙天体物理学和空间科学研究所领导,成员还包括伯明翰大学的研究人员。测量结果发表在《天文学与天体物理学通讯》(Astronomy & Astrophysics Letters)上。这些地震是利用一种被称为"星震学"的技术探测到的,这种技术测量恒星的振荡。研究小组利用安装在欧洲南方天文台(ESO)甚大望远镜(VLT)上的ESPRESSO摄谱仪,以前所未有的精度记录下了这些振荡。不同频率的声波(p 模式)在恒星内层传播的图像。图片来源:Tania Cunha(波尔图行星生命科学中心/西班牙天文科学研究所)技术突破和天文影响主要作者、波尔图大学天体物理学和空间科学研究所的蒂亚戈-坎潘特(Tiago Campante)说:"这些观测所达到的极高精度水平是一项杰出的技术成就。重要的是,这次探测最终表明,精确的小行星测量学可以精确到表面温度低至4200摄氏度(比太阳表面温度低约1000摄氏度)的冷矮星,从而有效地开辟了观测天体物理学的新领域。"橙矮星最近成为寻找宜居行星和外星生命的焦点。伯明翰物理与天文学学院院长、研究小组成员比尔-查普林(Bill Chaplin)教授说:"这些恒星的预测大小与观测大小不匹配,这对在它们周围寻找行星产生了影响。如果我们使用最成功的行星寻找技术所谓的凌日法我们就能得到行星相对于恒星大小的尺寸;如果我们没有正确地确定恒星的大小,我们发现的任何小行星也会出现同样的情况。"物理与天文学院比尔-查普林教授介绍说:"对振荡的探测将有助于理解和尽量缩小这些差异,并改进恒星的理论模型,这些恒星的预测大小和观测大小之间的不匹配对在它们周围寻找行星有影响"。未来探索对 Epsilon Indi 星震荡的探测将为欧洲航天局(ESA)计划于 2026 年发射的PLATO 任务提供信息,该任务将探测更多橙矮星的震荡。PLATO 还将寻找这些恒星周围的行星。伯明翰负责设计和交付 PLATO 的大部分小行星震荡学管道,其结果将被全世界成千上万的研究人员使用。编译自:ScitechDaily ... PC版: 手机版:

封面图片

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度

罗曼望远镜的强大能力将带来测量宇宙膨胀率的新维度 这幅哈勃太空望远镜拍摄的图像显示,一个星系嵌入一个巨大的星系团中,其强大的引力产生了其背后遥远的一颗超新星的多幅图像。图像显示了该星系在一个名为 MACS J1149.6+2223 的大型星系团中的位置,距离超过 50 亿光年。在该星系的放大插图中,箭头指向爆炸恒星的多幅图像,该恒星被命名为雷夫斯达尔超新星,距离地球 93 亿光年。资料来源:NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STScI)、Marc Postman(STScI)、Zolt G. Levay(STScI)、FrontierSN 小组、GLASS 小组、HFF 小组(STScI)、CLASH 小组。其中一个团队特别注重训练罗曼寻找引力透镜超新星,这种天体可以用于测量宇宙膨胀率的独特方法。他们说,罗曼对这些难以捉摸的透镜超新星的研究对宇宙学的未来有着巨大的潜力。美国国家航空航天局(NASA)的南希-格蕾丝-罗曼太空望远镜是为了纪念 NASA 的第一位首席天文学家而命名的,它代表着我们在探索了解宇宙的道路上的一次飞跃。这个尖端天文台计划于 2027 年 5 月发射,旨在探索暗能量的奥秘、研究系外行星,并以前所未有的清晰度揭示宇宙的膨胀速度。罗曼太空望远镜利用先进的技术对宇宙进行大范围、细致的观测,将为我们提供对宇宙的重要见解,增强我们对宇宙组成、结构和演化的了解。资料来源:美国国家航空航天局戈达德太空飞行中心天文学家正在研究宇宙中最紧迫的谜团之一宇宙膨胀的速度他们正准备利用美国国家航空航天局的南希-格蕾丝-罗曼太空望远镜(Nancy Grace Roman Space Telescope),以一种新的方式研究这个谜团。一旦罗曼望远镜于 2027 年 5 月发射升空,天文学家们将在罗曼望远镜的大范围图像中寻找引力透镜状超新星,这些超新星可以用来测量宇宙的膨胀速度。天文学家有多种独立的方法来测量宇宙目前的膨胀率,即哈勃常数。不同的技术得出不同的值,称为哈勃张力。罗曼的大部分宇宙学研究都将针对难以捉摸的暗能量,因为暗能量会影响宇宙随时间的膨胀。这些研究的一个主要工具是一种相当传统的方法,它将 Ia 型超新星等天体的固有亮度与其感知亮度进行比较,从而确定距离。另外,天文学家也可以使用罗曼法来研究重力透镜超新星。这种探索哈勃常数的方法与传统方法不同,因为它基于几何方法,而不是亮度。这幅插图利用哈勃太空望远镜拍摄的雷夫斯达尔超新星图像,展示了大质量星系团MACS J1149.6+2223的引力是如何弯曲并聚焦来自其背后的超新星的光线,从而产生爆炸恒星的多幅图像的。这种现象被称为引力透镜。引力透镜超新星为天文学家提供了一种计算哈勃常数宇宙加速的速率的独特方法。一个研究小组正准备利用美国宇航局即将于 2027 年 5 月发射的南希-格蕾丝-罗曼太空望远镜,让天文学家发现并研究这些罕见的天体。上图显示,当恒星爆炸时,它的光线穿过太空,遇到前景星系团。如果没有星系团,天文学家将只能探测到直射地球的超新星光线,并且只能看到超新星的单一图像。然而,在超新星多重成像的情况下,光路会被星系团的引力弯曲,并重新定向到新的光路上,其中有几条光路是指向地球的。因此,天文学家可以看到爆炸恒星的多幅图像,每幅图像都对应着其中一条改变的光路。每幅图像穿过星团的路线不同,到达地球的时间也不同,部分原因是光线到达地球的路径长度不同。精确测量多幅图像之间到达时间的差异,就可以得出一个距离组合,从而限制哈勃常数。在下图中,重定向光线穿过星团中的一个巨大椭圆星系。这个星系又增加了一层透镜作用,再一次改变了原本会错过我们的几条光路的方向,并将它们聚焦,使它们能够到达地球。资料来源:NASA、ESA、Ann Feild(STSCI)、Joseph DePasquale(STSCI)、NASA、ESA、Steve A. Rodney(JHU)、Tommaso Treu(UCLA)、Patrick Kelly(UC Berkeley)、Jennifer Lotz(STSCI)、Marc Postman(STSCI)、Zolt G. Levay(STSCI)、FrontierSN 小组、GLASS 小组、HFF 小组(STSCI)、CLASH 小组。引力透镜的前景位于巴尔的摩的空间望远镜科学研究所(STScI)的卢·斯特罗格是准备对罗曼望远镜进行研究的团队的共同负责人,他说:"罗曼是让引力透镜超新星研究起飞的理想工具。这些天体非常罕见,而且很难发现。我们不得不靠运气才能及早发现其中的几个。罗曼的大视野和高分辨率重复成像将有助于提高这些机会"。天文学家利用各种天文台,如美国宇航局的哈勃太空望远镜和詹姆斯-韦伯太空望远镜,在宇宙中发现了八颗引力透镜状超新星。然而,由于超新星的类型及其延时成像的持续时间,这八个超新星中只有两个是测量哈勃常数的可行候选者。当来自恒星爆炸等天体的光线在飞往地球的途中穿过星系或星系团,并被巨大的引力场偏转时,就会发生引力透镜现象。光线沿着不同的路径分裂,在天空中形成我们看到的超新星的多个图像。根据不同路径之间的差异,超新星图像会出现几小时到几个月,甚至几年的延迟。精确测量多幅图像之间到达时间的差异,就能得出距离组合,从而限制哈勃常数。罗曼望远镜的广泛勘测将能够以比哈勃更快的速度绘制宇宙地图,它在单幅图像中"看到"的面积是哈勃的 100 多倍。特别是,高纬度时域巡天将重复观测同一天空区域,这将使天文学家能够研究随时间变化的目标。这意味着将有大量的数据每次超过 50 亿像素需要进行筛选,以发现这些非常罕见的事件。斯特罗格是该计划的共同负责人,他是 STScI 的贾斯汀-皮埃尔(Justin Pierel)。他解释说:"这台新望远镜将使我们能够在一张快照中看到整个森林,而不是收集几张树木的照片。"由斯特罗格和皮埃尔领导的 STScI 小组正在通过美国宇航局太空和地球科学研究机会(ROSES)南希-格蕾丝-罗曼太空望远镜研究和支持参与机会计划资助的一个项目,为在罗曼数据中发现引力透镜超新星奠定基础。皮埃尔说:"由于这些超新星非常罕见,要充分利用引力透镜超新星的潜力,就必须做好充分准备。我们希望提前准备好寻找这些超新星的所有工具,这样当数据到来时,我们就不用浪费任何时间来筛选数以兆字节计的数据了"。该项目将由美国国家航空航天局(NASA)各中心和全国各大学的研究人员组成的团队实施。准备工作将分几个阶段进行。研究小组将创建数据还原管道,用于在罗曼成像中自动检测引力透镜超新星。为了训练这些管道,研究人员还将创建模拟成像:需要 50000 个模拟透镜,而目前已知的实际透镜只有 10000 个。斯特罗格和皮埃尔团队创建的数据缩减管道将补充正在创建的管道,以便利用 Ia 型超新星研究暗能量。"罗曼望远镜确实是创建黄金标准引力透镜超新星样本的第一次机会,"斯特罗格总结道。"我们现在的所有准备工作都将产生所需的所有成分,以确保我们能够有效地利用宇宙学的巨大潜力"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新型熔岩粘度测量工具为火山监测带来革命性变革

新型熔岩粘度测量工具为火山监测带来革命性变革 熔岩粘度测量的进展布法罗大学的研究人员开发了一种测量熔岩粘度的工具,它可以增加我们对熔岩的了解,更好地改进熔岩运动的模型,为有关部门保障人们的安全提供重要指导。他们的研究成果详见 AIP 出版社出版的《科学仪器评论》。对于熔岩等流体来说,粘度是衡量其流动速度的标准。粘度低的流体像水一样快速流动,而粘度高的流体则更像糖浆。当火山在靠近人类建筑物的地方喷发时,粘度测量可以告诉急救人员他们有多少时间做出反应,而目前的方法往往不够充分。水牛城大学的研究人员在对仪器进行实地测试时,收集了冰岛利特利-赫鲁图尔火山喷发熔岩流的粘度数据。资料来源:马丁-哈里斯粘度测量面临的挑战作者马丁-哈里斯(Martin Harris)说:"在冰岛或夏威夷等熔岩喷发相当频繁的地方,道路和社区等基础设施都会受到影响,对熔岩可能流向何处以及流向何处的速度的估计存在不确定性。"哈里斯认为,问题在于粘度测量几乎总是在实验室中进行。这让实验变得更简单、更安全,但却总是缺少一个关键环节。当熔岩从火山中喷发出来时,许多不同的气体会以气泡的形式被困在熔岩中。在实验室进行测量时,无法把气体放回去。因此,测量到的是没有所有不同成分的熔岩,错过了一些影响熔岩流动的东西。唯一的解决办法就是实地测量。然而,这也带来了一系列挑战。对熔岩进行实地粘度测量可以追溯到近一个世纪以前,但并没有取得多大成功。过去的许多尝试都是将金属棒插入熔岩,用手或弹簧活塞推动,甚至像长矛一样射入熔岩,以估算熔岩流的粘度。布法罗大学团队保留了传统的金属棒,并将其连接到测力计上以进行精确测量。他们将其与第二根杆配合起来测量位移,并设计了整个仪器,使其既轻便到可以手持,又耐用到可以在火山环境中使用。实地测试和未来目标完成设备后,团队在冰岛的一座活火山上对其进行了测试。哈里斯说:"我们花了将近两周的时间进入利特里-赫鲁图尔火山爆发周围的不同地点。我们在相当紧张的环境中工作了很长时间,但我认为最终我们都对所做的工作留下了深刻印象并感到满意。"在实地试验中,研究人员在不同地点和不同时间对熔岩进行了数十次测量。他们说,这类数据非常重要,因为它不仅能显示熔岩在某一时刻的情况,还能显示熔岩在扩散和冷却过程中的变化情况。哈里斯说:"这是人们第一次对熔岩的这些不同横断面进行测量。这个仪器真正令人兴奋的地方在于,我们能够显示熔岩的物理特性随时间和空间发生的变化。"研究小组希望进一步完善他们的仪器,并将其提供给世界各地的研究小组和火山监测站。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天文仪器中的Skipper CCD打破了宇宙观测的极限

天文仪器中的Skipper CCD打破了宇宙观测的极限 智利 Cerro Pachon 上的南方天体物理研究(SOAR)望远镜。资料来源:NOIRLab研究人员利用 4.1 米长的南方天体物理研究(SOAR)望远镜上的一台仪器,首次获得了使用鳍状电荷耦合器件(CCD)的天文光谱。6月16日,芝加哥大学物理学博士候选人、费米实验室能源部研究生仪器研究奖获得者埃德加-马鲁佛-比利亚潘多在日本举行的光电仪器工程师协会天文望远镜与仪器会议上介绍了这一成果。美国能源部费米国家加速器实验室的宇宙学家亚历克斯-德里卡-瓦格纳(Alex Drlica-Wagner)领导了这一项目,他说:"这是Skipper-CCD技术的一个重要里程碑。这有助于降低未来使用这种技术的风险,这对能源部未来的宇宙学项目至关重要。"这是费米实验室与美国国家科学基金会NOIRLab探测器小组合作,通过实验室指导研发计划构思和启动的一个项目所取得的重要成就。实验室指导研发计划是由能源部赞助的一项国家计划,允许国家实验室在内部资助研发项目,探索新的想法或概念。CCD 于 1969 年在美国发明,四十年后,科学家们因其成就获得了诺贝尔物理学奖。这种设备是由感光像素组成的二维阵列,可将进入的光子转换成电子。传统的 CCD 是最早用于数码相机的图像传感器,尽管其精度受到电子噪声的限制,但仍是天文学等许多科学成像应用的标准。宇宙学家试图通过研究恒星和星系的分布来了解暗物质和暗能量的神秘本质。为此,他们需要先进的技术,以尽可能少的噪声看到更暗、更遥远的天体。现有的 CCD 技术可以进行这些测量,但耗时较长或效率较低。因此,天体物理学家必须要么增加信号即在世界上最大的望远镜上投入更多时间要么减少电子噪声。Skipper CCD 于 1990 年推出,旨在将电子噪声降低到可以测量单个光子的水平。为此,它们对感兴趣的像素进行多次测量,并跳过其余像素。这种策略使Skipper CCD 能够提高对图像感兴趣区域的测量精度,同时缩短总读出时间。2017 年,科学家们率先在SENSEI和OSCURA 等暗物质实验中使用了 skipper CCD,但最近的演示则是首次将该技术用于观测夜空和收集天文数据。3月31日和4月9日,研究人员利用SOAR积分场摄谱仪中的Skipper CCD收集了一个星系团、两颗遥远类星体、一个具有明亮发射线的星系和一颗可能与暗物质主导的超淡星系有关的恒星的天文光谱。在天体物理 CCD 观测中,他们首次实现了亚电子读出噪声,并对光学波长的单个光子进行了计数。Marrufo Villalpando 说:"令人难以置信的是,这些光子从数十亿光年外的天体传送到我们的探测器,而我们可以单独测量每一个光子。"研究人员正在分析这些首次观测的数据,SOAR 望远镜上的 skipper-CCD 仪器的下一次运行计划是在 2024 年 7 月。Skipper CCD 的发明者、加利福尼亚州研究机构 SRI International 的杰出工程师 Jim Janesick 说:"自 Skipper 诞生以来,几十年过去了,所以我很惊讶地看到这项技术再次焕发生机。"噪音结果令人惊叹!当我看到非常干净的亚电子噪声数据时,我从座位上站了起来。"随着用于天体物理学的鳍状 CCD 技术的首次成功演示,科学家们已经开始着手改进该技术。费米实验室和劳伦斯伯克利国家实验室开发的下一代鳍状 CCD 比目前的设备快 16 倍。这些新设备将大大缩短读出时间,研究人员已经开始在实验室对其进行测试。下一代Skipper CCD 已被确定用于未来的能源部宇宙学工作,如最近美国粒子物理学规划进程建议的光谱实验DESI-II 和 Spec-S5。此外,美国国家航空航天局(NASA)正在考虑为即将建立的宜居世界天文台(Habitable Worlds Observatory)配备跳线式 CCD,该天文台将试图探测类太阳恒星周围的类地行星。"我很期待看到这些探测器的最终用途,"2019 年加入该计划的 Marrufo Villalpando 说。"人们正在用它们做各种令人惊叹的事情;它们的用途从粒子物理学到宇宙学都有。这是一项用途广泛、非常有用的技术。"该项目由费米实验室、芝加哥大学、美国国家科学基金会 NOIRLab、美国能源部劳伦斯伯克利国家实验室和巴西国家天体物理实验室的物理学家、天文学家和工程师密切合作完成。编译自/scitechdaily ... PC版: 手机版:

封面图片

图像到文本Image to Text,开源的图像到文本识别OCR工具项目,是Alejandro Akbal制作的实用网站, 用于

图像到文本 Image to Text,开源的图像到文本识别OCR工具项目,是Alejandro Akbal制作的实用网站, 用于使用 OCR 从任何图像中提取文本,而且是免费的,也可以自行购买服务器配置环境自行搭建

封面图片

NASA发布韦伯最新木星高清图像,令天文学家惊叹

NASA发布韦伯最新木星高清图像,令天文学家惊叹 当地时间8月22日,美国国家航空航天局(NASA)在其网站上公布了韦伯太空望远镜拍摄的两张木星图像。这些图片均为合成图像,由韦伯望远镜的近红外相机(NIRCam)拍摄,该设备配置有特制的滤镜,用于观察木星的不同细节。 NASA称,由于红外光对人眼不可见,因此NASA与美国加州学者朱迪·施密特(Judy Schmidt)合作,把韦伯望远镜的数据转化为图像,将红外光映射到可见光谱上,从而得到了这两张图像。 第一张图片是木星的“特写照片”,它由韦伯望远镜三个滤镜的图像合成。NASA称,红色滤镜主要针对木星南、北两极的极光,以及较低云层和高空雾气反射的光线;黄绿色的滤镜展示了木星两极旋转的雾气;蓝色滤镜则主要显示了木星较深的主云层反射的光线。 图片还可以清晰观察到木星上著名的大红斑,它在合成图像中呈现白色。NASA称,这是由于它反射了大量的太阳光。大红斑是木星上一个巨大的风暴气旋,其直径远大于地球。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人