中国科学家对肿瘤耐药机制的研究取得突破

中国科学家对肿瘤耐药机制的研究取得突破 《自然》杂志(Nature)美国时间 7 月 3 日刊登中山大学附属第七医院何裕隆、张常华教授团队主导的科研成果,揭示了一种 DNA 修复蛋白(NBS1)蛋白乳酸化修饰在肿瘤化疗耐药中的关键调控作用,对困扰全球医学界的 “百年谜题” 肿瘤如何产生耐药机制研究取得突破。 《NBS1 蛋白乳酸化修饰促进 DNA 损伤修复引起肿瘤耐药》揭示了肿瘤细胞如何抵抗化疗产生耐药性,为肿瘤免疫治疗、肿瘤放疗、肿瘤复发等问题研究开辟了新视角。

相关推荐

封面图片

《自然》杂志(Nature)美国时间 7 月 3 日刊登中山大学附属第七医院何裕隆、张常华教授团队主导的科研成果,揭示了一种 D

《自然》杂志(Nature)美国时间 7 月 3 日刊登中山大学附属第七医院何裕隆、张常华教授团队主导的科研成果,揭示了一种 DNA 修复蛋白(NBS1)蛋白乳酸化修饰在肿瘤化疗耐药中的关键调控作用,对困扰全球医学界的 “百年谜题” 肿瘤如何产生耐药机制研究取得突破。《NBS1 蛋白乳酸化修饰促进 DNA 损伤修复引起肿瘤耐药》揭示了肿瘤细胞如何抵抗化疗产生耐药性,为肿瘤免疫治疗、肿瘤放疗、肿瘤复发等问题研究开辟了新视角。(新华社)

封面图片

中国科学家在癌症精准治疗上获新突破

中国科学家在癌症精准治疗上获新突破 据统计,超过半数的人类肿瘤中发现了p53突变基因,突变后的p53蛋白不仅丧失了原有的抑癌能力,还异常聚集在细胞内,致使肿瘤发生、侵袭、转移以及化疗耐药等。研究人员通过NanoTAC技术形成仿生模拟人体天然降解系统的选择性自噬关键受体蛋白。该仿生纳米受体成功实现对肿瘤细胞中突变p53的自噬性降解,并在多种肿瘤细胞和卵巢癌患者来源的肿瘤动物模型中均展现出了显著治疗效果。NanoTAC技术作为一种全新的仿生纳米平台,不仅能够实现药物递送,还能够通过诱导自噬靶向降解致病蛋白,为解决癌症等重大疾病的精准治疗难题提供了新思路新方向。 ... PC版: 手机版:

封面图片

科学家发明可穿越血脑屏障的纳米粒子

科学家发明可穿越血脑屏障的纳米粒子 科学家们乐观地认为,他们的方法已在临床前模型中初见成效,最终可用于用一种疗法同时治疗脑转移瘤和原发性乳腺癌肿瘤。迈阿密大学米勒医学院西尔维斯特综合癌症中心的研究人员创造了一种能够穿越血脑屏障的纳米粒子。他们的目标是通过一次治疗消除原发性乳腺癌肿瘤和脑转移瘤。实验室研究表明,这种方法能有效缩小乳腺癌和脑肿瘤的体积。这些继发性肿瘤被称为脑转移瘤,最常见于乳腺癌、肺癌和结肠癌等实体瘤,通常预后较差。当癌症侵入大脑时,治疗就会变得非常困难,部分原因是血脑屏障,这是一层几乎无法穿透的薄膜,将大脑与身体的其他部分隔开。领导这项研究的生物化学与分子生物学副教授、西尔维斯特公司技术与创新部助理主任香塔-达尔(Shanta Dhar)博士说,西尔维斯特团队的纳米粒子有朝一日可能被用于治疗转移瘤,同时还能治疗原发肿瘤。她是5月6日发表在《美国国家科学院院刊》上的一篇论文的资深作者。Shanta Dhar 博士 Credit: Sylvester研究人员在粒子中加入了两种针对线粒体(细胞的能量产生中心)的原药,结果表明,他们的方法可以在临床前研究中缩小乳腺和脑肿瘤。达尔说:"我总是说纳米医学是未来,当然我们已经进入了这个未来。"他指的是市售的COVID-19疫苗,其配方中使用了纳米颗粒。"纳米医学肯定也是癌症疗法的未来"。这种新方法使用了一种由生物可降解聚合物制成的纳米粒子,这种聚合物是由达尔的研究小组之前开发的,同时还使用了她的实验室开发的两种针对癌症能量来源的药物。由于癌细胞的新陈代谢形式往往不同于健康细胞,因此抑制癌细胞的新陈代谢可以有效地杀死肿瘤,而不伤害其他组织。其中一种药物是经典化疗药物顺铂的改良版,它通过破坏快速生长细胞的DNA来杀死癌细胞,从而有效阻止其生长。但肿瘤细胞可以修复自己的DNA,有时会导致顺铂产生抗药性。达尔的研究小组对这种药物进行了改良,将其目标从核DNA(构成染色体和基因组的DNA)转移到线粒体DNA。线粒体是我们细胞的能量来源,包含自己小得多的基因组,而且对于癌症治疗来说,重要的是,线粒体不具备与我们的大基因组相同的DNA修复机制。由于癌细胞可以在不同的能量来源之间切换,以维持其生长和增殖,研究人员将他们的改良顺铂(他们称之为Platin-M,攻击称为氧化磷酸化的能量生成过程)与他们开发的另一种药物Mito-DCA 结合起来,后者专门针对一种称为激酶的线粒体蛋白,抑制糖酵解(一种不同的能量生成方式)。达尔说,开发能够进入大脑的纳米粒子是一条漫长的道路。她的整个独立职业生涯都在研究纳米粒子,在之前一个研究不同形式聚合物的项目中,研究人员注意到,在临床前研究中,一些纳米粒子的一小部分可以进入大脑。通过进一步研究这些聚合物,达尔的团队开发出了一种既能穿过血脑屏障又能穿过线粒体外膜的纳米粒子。达尔说:"要弄清这一点,我们经历了很多波折,我们仍在努力了解这些微粒穿过血脑屏障的机制。"研究小组随后在临床前研究中测试了这种特制的载药纳米粒子,发现它们能缩小乳腺肿瘤和在大脑中播种形成肿瘤的乳腺癌细胞。在实验室研究中,这种纳米粒子-药物组合似乎也是无毒的,并能显著延长存活时间。下一步,研究小组希望在实验室中测试他们的方法,以更接近地复制人类脑转移灶,甚至可能使用源自患者的癌细胞。他们还想在胶质母细胞瘤(一种侵袭性特别强的脑癌)的实验室模型中测试这种药物。在达尔实验室工作的迈阿密大学博士生阿卡什-阿肖坎(Akash Ashokan)说:"我对高分子化学非常感兴趣,将其用于医疗目的真的让我着迷,"阿卡什-阿肖坎是这项研究的共同第一作者,他与博士生舒丽塔-萨卡尔(Shrita Sarkar)共同完成了这项研究。"看到它被应用于癌症治疗,我感到非常高兴。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家揭示对基因组健康至关重要的145个基因

科学家揭示对基因组健康至关重要的145个基因 2月14日,《自然》杂志发表了一项新研究,通过对近千个转基因小鼠品系进行系统筛选,发现了一百多个与DNA损伤有关的关键基因。这项工作为癌症进展和神经退行性疾病提供了见解,也为蛋白质抑制剂提供了潜在的治疗途径。基因组包含生物细胞内的所有基因和遗传物质。当基因组稳定时,细胞就能准确地复制和分裂,将正确的遗传信息传递给下一代细胞。尽管基因组非常重要,但人们对影响基因组稳定性、保护、修复和防止 DNA 损伤的遗传因素知之甚少。突破性研究及其影响在这项新研究中,威康-桑格研究所的研究人员与剑桥大学英国痴呆症研究所的合作者一起,着手更好地了解细胞健康的生物学特性,并找出维持基因组稳定性的关键基因。研究小组利用一组转基因小鼠品系,确定了 145 个在增加或减少异常微核结构的形成中起关键作用的基因。这些结构表明基因组不稳定和 DNA 损伤,是衰老和疾病的常见标志。当研究人员敲除DSCC1基因时,基因组不稳定性的增加最为显著,异常微核的形成增加了五倍。缺乏该基因的小鼠具有与人类凝聚素病症患者相似的特征,这进一步强调了这项研究与人类健康的相关性。通过 CRISPR 筛选,研究人员发现DSCC1缺失引发的这种效应可以通过抑制蛋白质 SIRT1 得到部分逆转。这些发现有助于揭示影响人类基因组一生健康和疾病发展的遗传因素。该研究的资深作者、剑桥大学英国痴呆症研究所的加布里埃尔-巴尔穆斯(Gabriel Balmus)教授说:"继续探索基因组不稳定性对于开发针对遗传根源的定制治疗方法至关重要,其目标是改善各种疾病的治疗效果和患者的整体生活质量。我们的研究强调了SIRT抑制剂作为治疗粘连蛋白病和其他基因组疾病途径的潜力。它表明,早期干预,特别是针对 SIRT1 的干预,有助于在基因组不稳定性发展之前减轻与之相关的生物变化。"这项研究的第一作者、威康桑格研究所的大卫-亚当斯(David Adams)博士说:"基因组稳定性是细胞健康的核心,影响着从癌症到神经变性等一系列疾病,但这一直是一个探索相对不足的研究领域。这项工作历时15年,体现了从大规模、无偏见的基因筛选中可以学到什么。所发现的 145 个基因,尤其是那些与人类疾病相关的基因,为开发治疗癌症和神经发育障碍等基因组不稳定疾病的新疗法提供了有希望的靶点。"研究要点:对基因组造成损害的各种来源包括辐射、化学接触以及 DNA 复制或修复过程中的错误。微核是一种小的异常结构,通常被称为"突变工厂",其中含有错位的遗传物质,而这些物质本应在细胞核中。它们的存在意味着患癌症和发育障碍等疾病的风险增加。凝聚蛋白病是一组因凝聚蛋白功能障碍而导致的遗传病,凝聚蛋白对细胞分裂过程中染色体的正常组织和分离至关重要。这可能导致一系列发育异常、智力障碍、独特的面部特征和生长迟缓。当 SIRT1 蛋白被抑制时,DNA 损伤就会减少,它们就能挽救与内聚力破坏相关的DSCC1缺失所带来的负面影响。这种作用是通过恢复一种名为 SMC3 的蛋白质的化学水平实现的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

基因的 "文字处理器" - 科学家揭示生物编程的全新机制

基因的 "文字处理器" - 科学家揭示生物编程的全新机制 桥式重组酶机制的可视化。来源:视觉科学这项研究是与 Arc 研究所核心研究员、斯坦福大学生物化学助理教授 Silvana Konermann 和东京大学结构生物学教授 Hiroshi Nishimasu 的实验室合作完成的。桥式重组酶机制的可视化,突出显示供体和目标结合环。来源:视觉科学基因编程新时代该研究的资深作者、Arc 研究所核心研究员、加州大学伯克利分校生物工程助理教授 Patrick Hsu 博士说:"桥式 RNA 系统是一种全新的生物编程机制。桥式重组可以通过序列特异性插入、切除、反转等方式普遍修改遗传物质,从而实现超越CRISPR的活体基因组文字处理器。"桥式重组系统源于插入序列 110(IS110)元件,它是无数种可转座元件(或称"跳跃基因")中的一种,可在微生物基因组内部和之间进行剪切和粘贴。可转座元件遍布所有生命形式,并已进化成专业的 DNA 操作机器,以求生存。IS110元件非常简单,仅由一个编码重组酶的基因和侧翼DNA片段组成,而这些DNA片段直到现在仍是一个谜。可视化桥式重组酶机制,突出显示转座子 DNA 和基因组目标位点。来源:视觉科学桥式 RNA 的先进机制Hsu 实验室发现,当 IS110 从基因组中切除时,非编码 DNA 的末端会连接在一起,产生一个折叠成两个环的 RNA 分子桥接 RNA。其中一个环路与 IS110 元本身结合,而另一个环路则与插入 IS110 元的目标 DNA 结合。桥接 RNA 是双特异性引导分子的第一个例子,它通过碱基配对相互作用指定目标 DNA 和供体 DNA 的序列。研究小组发现了桥式重组酶机制,这是一种以可编程方式重组和重排 DNA 的精确而强大的工具。桥式重组酶机制远远超越了CRISPR等可编程基因剪刀,它使科学家们不仅能指定要修改的目标DNA,还能指定要识别的供体材料,因此他们可以插入新的功能性遗传物质,剪除有问题的DNA,或反转任何两个感兴趣的序列。通过这段可视化桥式重组机制关键环节的视频短片,您可以了解更多信息。来源:视觉科学桥接 RNA 的每个环路都可独立编程,研究人员可以将感兴趣的目标 DNA 序列与供体 DNA 序列混合匹配。这意味着该系统可以远远超越其插入 IS110 元件本身的天然作用,而是能够将任何理想的基因载荷(如有缺陷的致病基因的功能拷贝)插入到任何基因组位置。在这项工作中,研究小组证明,在大肠杆菌中插入所需基因的效率超过 60%,对正确基因组位置的特异性超过 94%。共同第一作者、加州大学伯克利分校生物工程研究生尼克-佩里(Nick Perry)说:"这些可编程桥接 RNA 将 IS110 与其他已知重组酶区分开来,后者缺乏 RNA 成分,无法进行编程。就好像桥接 RNA 是一个通用电源适配器,能让 IS110 与任何插座兼容"。Patrick Hsu、Nick Perry 和 Matt Durrant 讨论新发现的桥式重组酶机制。图片来源:Ray Rudolph合作研究和未来影响Hsu实验室与东京大学Hiroshi Nishimasu博士实验室的合作补充了他们的发现,这一发现也于6月26日发表在《自然》杂志上。Nishimasu 实验室利用低温电子显微镜确定了与目标 DNA 和供体 DNA 结合的重组酶桥 RNA 复合物的分子结构,并依次对重组过程的关键步骤进行了分析。Januka Athukoralage、Nicholas Perry、Silvana Konermann、Matthew Durrant、Patrick Hsu、James Pai 和 Aditya Jangid。图片来源:雷-鲁道夫随着进一步的探索和发展,桥接机制有望开创第三代 RNA 引导系统,超越 CRISPR 和 RNA 干扰(RNAi)的 DNA 和 RNA 切割机制,为可编程 DNA 重排提供统一机制。对于哺乳动物基因组设计桥式重组系统的进一步发展至关重要的是,桥式重组酶可以连接两条 DNA 链,而不会释放切割 DNA 片段这避开了当前最先进基因组编辑技术的一个关键局限。"桥式重组机制解决了其他基因组编辑方法所面临的一些最基本的挑战,"研究共同负责人、Arc 公司资深科学家马修-达兰特(Matthew Durrant)说。"可编程地重新排列任意两个DNA分子的能力为基因组设计的突破打开了大门"。编译自/ScitechDaily ... PC版: 手机版:

封面图片

研究人员发现曲贝替定(trabectedin)绕过癌细胞DNA修复机制的方法

研究人员发现曲贝替定(trabectedin)绕过癌细胞DNA修复机制的方法 曲贝替定(Trabectedin)是一种抗癌药物,最初是从红树海鞘(Ecteinascidia turbitana)中分离出来的,已知会形成细胞毒性 DNA 加合物。它被用于治疗肉瘤和卵巢癌,与大多数抗肿瘤药物不同的是,它能在 DNA 修复活跃的细胞中充分发挥作用。资料来源:基础科学研究所这种方法包括选择与个体癌症独特属性精确匹配的药物。事实证明,精准医疗尤其有利于治疗那些已经发展到可以逃避常规治疗的癌症。曲贝替定(Trabectedin)是一种从红树海鞘(Ecteinascidia turbinata)中提取出来的药物,它在抗击对传统疗法有抗药性的癌症方面显示出了潜力。然而,它的确切作用机制一直难以捉摸直到现在。韩国基础科学研究所基因组完整性中心的 Son Kook 博士和 Orlando D. Scharer 教授与瑞士苏黎世联邦理工学院的 Vakil Takhaveev 博士和 Shana Sturla 教授通力合作,终于揭开了这种神秘化合物的神秘面纱。利用高灵敏度的高通量 COMET 芯片检测细胞基因组中形成的断裂,IBS 的研究人员揭示了曲贝替定(trabectedin)会诱导癌细胞 DNA 中的持续断裂。研究人员发现,这些DNA断裂只在具有高水平DNA修复能力的细胞中形成,特别是那些运行一种称为转录偶联核苷酸切除修复(TC-NER)途径的细胞。TC-NER是一种重要机制,可在转录过程中识别DNA损伤,启动涉及两种内切酶ERCC1-XPF和XPG的修复过程。曲贝替定(Trabectedin)的DNA损伤会破坏这一过程,它允许ERCC1-XPF进行初始切割,但会阻断XPG的后续作用,从而停止TC-NER过程。这种修复过程的中断会导致持久的 DNA 断裂,最终杀死癌细胞。COMET Chip 检测法用于测量细胞中曲贝替定(Trabectedin)诱导的断裂。每个绿点代表一个细胞核,尾部长度和从每个细胞核出现的尾部(彗星)中总 DNA 的比例与形成的断裂数量成正比。紫外线处理后(左图),由于核苷酸切除修复(NER)将紫外线损伤从 DNA 中切除,因此几乎看不到断裂。使用曲贝替定(中间)处理后,由于 NER 反应失败,DNA 断裂持续存在。断裂依赖于 NER,因为在 XPF 基因失活的 TC-NER 缺陷细胞(右)中不会出现断裂。资料来源:基础科学研究所对曲贝替定(Trabectedin)诱导的DNA断裂模式的分析表明,断裂在整个基因组中都有形成,但只在发生活跃转录和TC-NER的位点上形成。利用对DNA断裂累积机制的这一新认识,研究人员试图确定这些断裂发生在基因组的哪个位置。由此,研究人员开发出了一种名为 TRABI-Seq(TRABectedin-Induced break sequencing)的新方法,它可以精确地识别肿瘤细胞 DNA 中曲贝替定的作用位点。Son博士解释说:"ERCC1-XPF的这一切口在DNA中产生了一个可标记的游离羟基,使我们能够对DNA进行测序并定位这些断裂。"目前研究人员正在对各种癌细胞进行 TRABI-Seq 测试,以确定曲贝替定(Trabectedin)对具有高级 DNA 修复能力的肿瘤的疗效,这些肿瘤往往与癌基因激活导致的转录水平升高有关。这些发现将有助于把曲贝替尼定位为识别易受影响癌症的预测性标记物和精准治疗的治疗选择。由于曲贝替定能够靶向对传统疗法产生抗药性的肿瘤,它可能会为抗击具有高度活跃的DNA修复能力的耐药性癌症带来更多希望。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人