北京大学科研团队在国际上首创出一种全新的晶体制备方法,让材料如 “顶着上方结构往上走” 的 “顶竹笋” 一般生长,可保证每层晶体

北京大学科研团队在国际上首创出一种全新的晶体制备方法,让材料如 “顶着上方结构往上走” 的 “顶竹笋” 一般生长,可保证每层晶体结构的快速生长和均一排布,极大提高了晶体结构的可控性。这种 “长材料” 的新方法有望提升芯片的集成度和算力,为新一代电子和光子集成电路提供新的材料。这一突破性成果于 7 月 5 日在线发表于《科学》杂志。

相关推荐

封面图片

韩国研究团队开发出一种亚纳米晶体管的生长方法

韩国研究团队开发出一种亚纳米晶体管的生长方法 半导体器件的尺寸取决于栅电极的宽度和效率。由于光刻技术的限制,目前的制造工艺无法将栅极长度控制在几纳米以下。为了解决这个问题,研究小组使用二硫化钼的镜像孪生边界(MTB)作为栅极电极,这种1D金属的宽度只有0.4纳米。IBS 团队通过在原子水平上改变二维半导体的晶体结构,实现了一维 MTB 金属相。国际器件与系统路线图(IRDS)预测,到2037年,半导体技术将达到约0.5纳米,晶体管栅极长度将达到12纳米。研究团队的晶体管显示,其沟道宽度小至 3.9 纳米,超过了这一预测。基于 1D MTB 的晶体管在电路性能方面也具有优势。与当前一些在高度集成电路中面临寄生电容问题的技术(FinFET 或 GAA)不同,这种新型晶体管由于结构简单、栅极宽度小,可以最大限度地减少此类问题。 ... PC版: 手机版:

封面图片

该材料被命名为 LK-99,是一种参铜铅磷灰石,呈现六方晶体结构,超导临界温度最高 126.85°C (400K)。作者通过零电

该材料被命名为 LK-99,是一种参铜铅磷灰石,呈现六方晶体结构,超导临界温度最高 126.85°C (400K)。作者通过零电阻转变与迈斯纳效应的测量证实了该材料的超导性 (并附上了悬浮视频)。论文中详细介绍了材料的合成方法,条件与过程十分简单,因此很快就能被人验证。

封面图片

研究人员发明一种扭曲的多层晶体结构 为经典“材料设计”注入新的活力

研究人员发明一种扭曲的多层晶体结构 为经典“材料设计”注入新的活力 科学家们发现,当晶体被夹在两个基底之间时,它们会发生扭曲这是探索电子和其他应用领域新材料特性的关键一步。来自美国能源部SLAC 国家加速器实验室、斯坦福大学和劳伦斯伯克利国家实验室(LBNL)的研究人员首次培育出了一种扭曲的多层晶体结构,并测量了该结构的关键特性。这种创新结构有望帮助创造先进的材料,应用于太阳能电池、量子计算、激光器和其他各种技术。"这种结构是我们以前从未见过的这对我来说是一个巨大的惊喜,"斯坦福大学和SLAC教授、论文合著者崔毅说。"在未来的实验中,这种三层扭曲结构中可能会出现一种新的量子电子特性。"该团队设计的晶体扩展了外延生长的概念,即一种晶体材料有序地生长在另一种材料之上的现象有点像在土壤之上长出整齐的草坪,但却是原子级的。50 多年来,了解外延生长对许多行业,尤其是半导体行业的发展至关重要。事实上,外延生长是我们今天使用的许多电子设备的一部分,从手机、电脑到太阳能电池板,都允许电力在其中流动或不流动。迄今为止,外延研究的重点是在一层材料上生长另一层材料,并且两种材料在界面上具有相同的晶体取向。几十年来,这种方法在晶体管、发光二极管、激光器和量子设备等许多应用领域都取得了成功。但是,为了找到性能更好的新材料,以满足量子计算等更高的需求,研究人员正在寻找其他外延设计可能更复杂但性能更好的外延设计,这就是本研究中展示的"扭曲外延"概念。在最近发表在《科学》(Science)杂志上的一篇论文中详细介绍了他们的实验,研究人员在传统半导体材料二硫化钼(MoS2)的两层薄片之间添加了一层金。崔教授在斯坦福大学材料科学与工程系的研究生、该论文的共同作者崔毅(音译)说,由于上下两层板的方向不同,金原子无法同时与两层板对齐,因此金结构发生了扭曲。研究生崔毅说:"只有底层MoS2时,金很乐意与之对齐,因此不会发生扭曲。但如果有两层扭曲的MoS2,金就不能确定是与顶层对齐还是与底层对齐。我们设法帮助金解决了它的困惑,并发现了金的取向与双层MoS2 扭转角度之间的关系。"为了详细研究金层,斯坦福材料与能源科学研究所(SIMES)和 LBNL 的研究团队将整个结构的样品加热到 500摄氏度。然后,他们利用一种名为透射电子显微镜(TEM)的技术将电子流穿过样品,从而揭示了金纳米盘在不同温度下退火后的形态、取向和应变。测量金纳米盘的这些特性是了解未来如何将新结构设计用于实际应用的必要第一步。崔说:"如果没有这项研究,我们根本不知道在半导体顶部扭曲金属外延层是否可能。用电子显微镜测量完整的三层结构证实,这不仅是可能的,而且可以用令人兴奋的方式控制新结构"。下一步,研究人员希望利用 TEM 进一步研究金纳米盘的光学特性,并了解其设计是否会改变金的带状结构等物理特性。他们还希望扩展这一概念,尝试用其他半导体材料和其他金属构建三层结构。斯坦福大学材料科学与工程学院查尔斯-皮戈特(Charles M. Pigott)教授、论文合著者鲍勃-辛克莱尔(Bob Sinclair)说:"我们正在开始探索是否只有这种材料组合才能实现这种效果,或者这种效果是否会更广泛地发生。这一发现开启了我们可以尝试的一系列全新实验。我们可能即将找到可以利用的全新材料特性。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

AI颠覆材料学!DeepMind重磅研究登Nature,预测220万晶体结构赢人类800年 一直认为AI for Science

AI颠覆材料学!DeepMind重磅研究登Nature,预测220万晶体结构赢人类800年 一直认为AI for Science对人类更有意义。Google在这个战略方向的布局和持之以恒的投入导致现在硕果累累。得诺贝尔奖可能都是迟早的事。个人觉得至少比AI for 聊天和画画有意义。 #抽屉IT

封面图片

克服不可逆热膨胀:科学家提高PBX炸药的爆炸性能和安全性

克服不可逆热膨胀:科学家提高PBX炸药的爆炸性能和安全性 最近对以 TATB 为基础的聚合物粘结炸药(PBX)的研究主要集中在了解和控制其不可逆热膨胀上,因为热膨胀会影响形状稳定性和安全性。结构设计的创新和负热膨胀材料的应用被认为是缓解这些问题的可行方法。资料来源:Cong-mei Lin, et al来自中国的一组研究人员在《高能材料前沿》(KeAi journalEnergetic Materials Frontiers)杂志上发表的一项研究中,探讨了 TAT 的独特晶体结构和基于 TATB 的 PBX 的热膨胀机理。此外,他们还总结了热膨胀过程中的微结构演变,并分析了热膨胀对这些炸药整体性能的影响。"我们更加关注热膨胀的影响因素和控制方法。显而易见,通过设计负热膨胀聚合物或填料和正膨胀 TATB 晶体,设计一种新结构的负热膨胀结合系统,可以降低 PBX 的线膨胀系数,"该研究的第一作者林聪美解释说。"这种方法不仅能抑制材料的热膨胀,而且具有广阔的应用前景。"值得注意的是,抑制基于 TATB 的 PBX 的不可逆热膨胀以及提高爆炸物在温度循环环境下的形状稳定性非常重要。然而,有效抑制 TATB 基 PBX 的热膨胀仍是一项挑战。"今后,我们需要重点研究TATB基PBX的不可逆膨胀机理;TATB晶体结构设计与控制;新型结构功能集成聚合物的设计与开发;新型负热膨胀功能材料的应用。"作者认为,TATB 和粘结剂体系结构设计的发展以及负热膨胀功能材料的应用将为抑制基于 TATB 的 PBX 的热膨胀带来新的机遇,并丰富了高能复合材料的改性技术。 ... PC版: 手机版:

封面图片

可重构晶体管可通过编程执行不同功能

可重构晶体管可通过编程执行不同功能 研究人员解释说,射频晶体管是电子电路和芯片设计技术的重大突破。可编程晶体管使用的材料与半导体工业使用的材料相同,即硅和锗,它们可以显著改善功耗和能效。传统的晶体管开发包括化学掺杂,这是一种用外来原子"污染"半导体材料的技术。掺杂过程决定了电流的流动方向,一旦晶体管被制造出来就无法改变。射频晶体管用静电掺杂取代了化学掺杂,这是一种不会永久改变半导体材料化学结构的新方法。一旦电场取代了"复杂而昂贵"的化学掺杂过程,晶体管就可以动态地重新配置,以执行不同的逻辑运算。维也纳工业大学教授沃尔特-韦伯(Walter M. Weber)说,重配置工作在"基本开关单元",而不是将信息路由到固定的功能单元。韦伯补充说,这种方法对于构建未来的可重构计算和人工智能应用"大有可为"。研究人员于 2021 年开发出了 RFET 基本技术,现在他们已经证明可重写晶体管可用于构建芯片中的所有基本逻辑电路。最近发表的研究报告展示了一种反相器、NAND/NOR 和 XOR/XNOR 门,它们能够在运行时动态切换工作模式。静电掺杂所需的额外栅极需要占用空间,这意味着 RFET 并不像标准 CMOS 晶体管那么小。新的可编程晶体管不可能很快取代固定晶体管,但它们可以共存,并为某些灵活性至关重要的计算应用提供动力。研究人员解释说,RFET 的可重构特性可以减少逻辑电路所需的晶体管总数。更少的晶体管意味着制造芯片所需的空间更小,功耗也会降低。通过切换单个晶体管或整个电路的极性,单个电路可以提供多种功能。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人