#医疗 #AI #开源

#医疗 #AI #开源 ChatDoctor 项目地址 丨 开源地址 一个使用医学领域知识在 LLaMA 模型上微调的医学聊天模型,旨在为患者提供智能可靠的医疗助手,回答医疗问题并提供个性化建议。 项目数据来自在线医疗咨询网站的 10 万条真实医患对话,在理解患者需求和提供明智建议方面显示出显着的改进。 它还配备了维基百科和自主构建的包含 700 多种疾病的数据库,可以检索相应的知识和可靠的来源,更准确地回答患者的询问。 频道 @WidgetChannel 投稿 @WidgetPlusBot

相关推荐

封面图片

WiNGPT:基于GPT的医疗垂直领域大模型,旨在将专业的医学知识、医疗信息、数据融会贯通,为医疗行业提供智能化的医疗问答、诊断

WiNGPT:基于GPT的医疗垂直领域大模型,旨在将专业的医学知识、医疗信息、数据融会贯通,为医疗行业提供智能化的医疗问答、诊断支持和医学知识等信息服务,提高诊疗效率和医疗服务质量。 核心功能: 医学知识问答:可以回答关于医学、健康、疾病等方面的问题,包括但不限于症状、治疗、药物、预防、检查等。 自然语言理解:理解医学术语、病历等医疗文本信息,提供关键信息抽取和归类 多轮对话:可扮演各种医疗专业角色如医生与用户进行对话,根据上下文提供更加准确的答案。 多任务支持:支持32项医疗任务,八大医疗场景18个子场景。 模型架构:基于Transformer的70亿参数规模大语言模型, 采用RoPE相对位置编码、SwiGLU激活函数、RMSNorm,训练采用Qwen-7b1作为基础预训练模型。 主要特点: 高准确度:基于大规模医疗语料库训练,具有较高的准确率和较低的误诊可能性。 场景导向:针对不同的医疗场景和真实需求进行专门优化和定制,更好的服务应用落地。 迭代优化:持续搜集和学习最新的医学研究,不断提高模型性能和系统功能。 | 下载地址: |

封面图片

【中国信通院冯天宜:AI大模型在医疗服务、药品供应等7大领域已有部分探索性应用】

【中国信通院冯天宜:AI大模型在医疗服务、药品供应等7大领域已有部分探索性应用】 在大模型场景融合方面,中国信通院云大所数字健康部副主任冯天宜表示,当前 AI 大模型在医疗服务、患者服务、医学科教研、公共卫生、传统医学、药品供应、运营管理 7 大领域已有部分探索性应用。不过,大模型在应用中展示潜力和价值的同时也面临着技术成熟度、医学数据质量与安全、医疗质量与公平等方面的风险。因此,冯天宜建议,促进发展与监管规范需并行,建立健全医疗健康行业大模型标准体系和科技伦理治理体系,是推动医疗健康行业大模型产业高质量发展的关键。 快讯/广告 联系 @xingkong888885

封面图片

研究显示AI大语言模型在处理医疗编码方面有着明显局限性

研究显示AI大语言模型在处理医疗编码方面有着明显局限性 这项研究从西奈山医疗系统 12 个月的常规护理中提取了 27000 多个独特的诊断和手术代码,同时排除了可识别的患者数据。通过对每个代码的描述,研究人员促使 OpenAI、Google和 Meta 的模型输出最准确的医疗代码。研究人员将生成的代码与原始代码进行了比较,并分析了错误的模式。研究人员报告说,所研究的所有大型语言模型,包括 GPT-4、GPT-3.5、Gemini-pro 和 Llama-2-70b 在再现原始医疗代码方面都显示出有限的准确性(低于 50%),这突出表明这些模型在医疗编码的实用性方面存在很大差距。GPT-4 的性能最好,ICD-9-CM(45.9%)、ICD-10-CM(33.9%)和 CPT 代码(49.8%)的精确匹配率最高。GPT-4 还生成了最高比例的错误代码,但仍然表达了正确的含义。例如,当给出 ICD-9-CM 中"结节性前列腺,无尿路梗阻"的描述时,GPT-4 生成了"结节性前列腺"的代码,展示了其对医学术语相对细微的理解。然而,即使考虑到这些技术上正确的代码,仍然存在大量令人无法接受的错误。其次是 GPT-3.5 模型,该模型的模糊倾向最大。与准确的代码相比,它错误生成的代码中准确但较为笼统的代码比例最高。在这种情况下,当提供 ICD-9-CM 描述"未指定的麻醉不良反应"时,GPT-3.5 生成的代码为"其他未在别处分类的特定不良反应"。研究报告的通讯作者、伊坎山西奈医院数据驱动与数字医学(D3M)和医学(消化内科)助理教授、医学博士、理学硕士阿里-索罗什(Ali Soroush)说:"我们的研究结果突出表明,在医疗编码等敏感业务领域部署人工智能技术之前,亟需进行严格的评估和改进。虽然人工智能拥有巨大的潜力,但必须谨慎对待并不断开发,以确保其在医疗保健领域的可靠性和有效性。"研究人员说,这些模型在医疗保健行业的一个潜在应用是根据临床文本自动分配医疗代码,用于报销和研究目的。"以前的研究表明,较新的大型语言模型在处理数字任务时非常吃力。然而,这些模型从临床文本中分配医疗代码的准确程度尚未在不同的模型中得到深入研究,"共同第一作者、D3M 的生成式人工智能研究项目主任、医学博士 Eyal Klang 说。"因此,我们的目的是评估这些模型能否有效地完成将医疗代码与其相应的官方文本描述相匹配的基本任务。"研究报告的作者提出,将 LLM 与专家知识相结合可以实现医疗代码提取的自动化,从而有可能提高账单的准确性并降低医疗保健的管理成本。"这项研究揭示了人工智能在医疗保健领域的现有能力和挑战,强调了在广泛采用之前进行仔细考虑和进一步完善的必要性,"共同第一作者、西奈山伊坎大学医学教授、查尔斯-布朗夫曼个性化医学研究所所长兼 D3M 系统主管艾琳-费什伯格博士(Irene and Dr. Arthur M. Fishberg)医学博士、医学博士吉里什-纳德卡尔尼(Girish Nadkarni)说。研究人员提醒说,这项研究的人工任务可能并不能完全代表真实世界的情况,在这种情况下,LLM 的表现可能会更糟。下一步,研究团队计划开发量身定制的 LLM 工具,用于准确提取医疗数据和分配账单代码,以提高医疗运营的质量和效率。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

一个医疗大语言模型的综合评测框架,具有以下三大特点:

一个医疗大语言模型的综合评测框架,具有以下三大特点: 1.大规模综合性能评测:GenMedicalEval构建了一个覆盖16大主要科室、3个医生培养阶段、6种医学临床应用场景、基于40,000+道医学考试真题和55,000+三甲医院患者病历构建的总计100,000+例医疗评测数据。这一数据集从医学基础知识、临床应用、安全规范等层面全面评估大模型在真实医疗复杂情境中的整体性能,弥补了现有评测基准未能覆盖医学实践中众多实际挑战的不足。 2.深入细分的多维度场景评估:GenMedicalEval融合了医师的临床笔记与医学影像资料,围绕检查、诊断、治疗等关键医疗场景,构建了一系列多样化和主题丰富的生成式评估题目,为现有问答式评测模拟真实临床环境的开放式诊疗流程提供了有力补充。 3.创新性的开放式评估指标和自动化评估模型:为解决开放式生成任务缺乏有效评估指标的难题,GenMedicalEval采用先进的结构化抽取和术语对齐技术,构建了一套创新的生成式评估指标体系,这一体系能够精确衡量生成答案的医学知识准确性。进一步地,基于自建知识库训练了与人工评价相关性较高的医疗自动评估模型,提供多维度医疗评分和评价理由。这一模型的特点是无数据泄露和自主可控,相较于GPT-4等其他模型,具有独特优势。 | #框架

封面图片

作为当下最受欢迎的开源 AI 大模型解决方案,GitHub 上一个开源项目 Colossal-AI 建立了一整套完整的 RLHF

作为当下最受欢迎的开源 AI 大模型解决方案,GitHub 上一个开源项目 Colossal-AI 建立了一整套完整的 RLHF 流程,包括:监督数据集收集 -> 监督微调 -> 奖励模型训练 -> 强化学习微调。 并且,技术团队以 LLaMA 为基础预训练模型,正式推出了 ColossalChat,这也是目前最接近 ChatGPT 原始技术方案的实用开源项目。 该项目包括但不限于以下功能: - Demo:可直接在线体验模型效果,无需注册或 waitinglist; - 训练代码:开源完整 RLHF 训练代码,已开源至含 7B 和 13B 两种模型; - 数据集:开源 104K 中、英双语数据集; - 推理部署:4bit 量化推理 70 亿参数模型仅需 4GB 显存; - 模型权重:仅需单台服务器少量算力即可快速复现; - 更大规模模型、数据集、其他优化等将保持高速迭代添加。 目前,相关代码已开源至 GitHub,感兴趣的同学可以看下。 项目还有提供完整的中文教程,进一步降低学习门槛,让大家能更快上手开发。 |||||

封面图片

开源 AI、大模型和许可证

开源 AI、大模型和许可证 在前不久举行的 FOSDEM 2024 会议上,有多场演讲探讨了开源 AI、许可证中的伦理限制和开源数据集。训练大模型需要投入大量的算力和资金,企业如 OpenAI 既没有公开模型也没有发布数据集,但这没有阻止各类企业和组织发布开源大模型,这些开源模型使用了不同的许可证,有着不同的限制。以 Meta 的 Llama 2 大模型为例,它禁止将大模型用于暴力或恐怖活动,以及“任何其他犯罪活动”。欧洲自由软件基金会(FSFE)的项目经理 Niharika Singhal 认为,为了维护 AI 的“开放性”,AI 模型的许可证必须与自由软件许可证有互操作性。许可证不能代替监管,此类对道德的限制不应该包含在许可证中,这些属于监管范围。开源促进会(Open Source Initiative)正致力于对开源 AI 进行定义,它认为如果一个模型被归类为开源,它需要具有开源软件所拥有的四个基本自由使用、学习、分享及改善之自由。开源促进会计划在今年 10 月底发布开源 AI 定义的 1.0 版本。来源 , 频道:@kejiqu 群组:@kejiquchat

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人