这个页面汇总了语言模型相关(AI、ML、LLM、Transformer)的最重要的论文,同时还有把各个论文的发布时间和相互的引用

None

相关推荐

封面图片

:总结Prompt&LLM论文,开源数据&模型,AIGC应用

封面图片

:关于在软件测试中使用大型语言模型 (LLM) 的论文和资源的集合。

:关于在软件测试中使用大型语言模型 (LLM) 的论文和资源的集合。 LLM已成为自然语言处理和人工智能领域的突破性技术。这些模型能够执行各种与编码相关的任务,包括代码生成和代码推荐。因此,在软件测试中使用LLM预计会产生显着的改进。一方面,软件测试涉及诸如单元测试生成之类的任务,这些任务需要代码理解和生成。另一方面,LLM可以生成多样化的测试输入,以确保全面覆盖正在测试的软件。 此存储库对LLM在软件测试中的运用进行了全面回顾,收集了 102 篇相关论文,并从软件测试和法学硕士的角度进行了全面的分析。

封面图片

前几天微软发了一篇挺重要的关于 LLM 的论文,但我看不太懂。

前几天微软发了一篇挺重要的关于 LLM 的论文,但我看不太懂。 从社区讨论来看,这个研究可以大幅压缩模型体积,让 120B 大小的模型能在 24G 显存的设备上运行。 再加上一些其他优化我们在消费级设备运行 Llama 70B 也不是什么遥不可及的事情。 论文简介: 《1位大语言模型时代来临:一切大型语言模型均转向1.58位构架》 一种1位的LLM变体,命名为BitNet b1.58。在这个模型里,大语言模型的每个参数(或权重)都是三元的{-1, 0, 1}。它在复杂度和实际应用性能方面与相同模型规模和训练数据的全精度(即FP16或BF16)Transformer大语言模型不相上下,但在延迟、内存、吞吐量和能源消耗方面更具成本效益。 更为重要的是,1.58位LLM定义了新的扩展规律,并为训练新一代既高性能又高效的LLMs提供了方法。此外,它还开启了一个全新的计算范式,并为设计专门针对1位LLMs优化的硬件提供了可能性。 论文:

封面图片

:自然语言处理领域大型语言模型(LLM)的精选资源列表,提供综述、论文和未来研究方向,促进NLP领域内LLM的应用和研究

封面图片

:深度学习领域中键值缓存技术的研究论文集合,专注于Transformer模型解码效率和内存优化,促进模型性能提升和资源优化

封面图片

黄仁勋对话Transformer论文七大作者:我们被困在原始模型里,还需要更强大的新架构

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人