视觉语言模型详解

None

相关推荐

封面图片

:开源的视觉-语言(VL)模型,旨在实现真实世界的视觉语言理解。

:开源的视觉-语言(VL)模型,旨在实现真实世界的视觉语言理解。 它具有广泛的多模态理解能力,能够处理逻辑图表、网页、公式识别、科学文献、自然图像和复杂场景中的具体智能等。 DeepSeek-VL提供了多个模型版本,包括不同规模和功能的模型,以满足不同的研究和商业应用需求。

封面图片

:用 PyTorch 从头开始实现的视觉语言模型

封面图片

谷歌发布史上最大的视觉语言模型 PaLM-E

谷歌发布史上最大的视觉语言模型 PaLM-E 谷歌 PaLM-E 有着5620亿参数 (ChatGPT 为1750亿参数) ,结合了 PaLM-540B 语言模型与 ViT-22B 视觉模型。将现实世界的连续传感器模态直接纳入语言模型,"为AI移植眼睛"从而建立单词和感知之间的联系。 PaLM-E 直接从机器人摄像头获取原始图像数据,并根据自然语言指令进行动作规划和执行,这样就避免了人工预处理或标注数据的需要,可以端到端自主学习这些任务。 研究团队同时发现: 1. 语言模型越大,在视觉语言和机器人任务训练时就越能保持其语言能力,PaLM-E 的5620亿的参数量刚好让它保留住了几乎所有语言能力。 2. "通才AI"的正迁移能力,同时在多个任务领域训练的 PaLM-E,单任务能力相比"专精AI"显着提高。 3. 除了人机交互方面有着重大进展,团队还发现了 PaLM-E 有着诸如多模态思维链推理和多图像推理等新兴能力,在 OK-VQA 视觉问答基准测试上达成了新的 SOTA (最佳水平AI)。

封面图片

归纳了当前视觉语言模型的主要方法,即对比学习、掩码、生成式和利用预训练模型,阐述了各自的工作机制、优势和局限,为视觉语言模型研究

封面图片

:在 Mac 上使用 MLX 运行视觉语言模型(Vision LLM)的包

封面图片

LLaV:一个拥有类似 GPT-4 的大语言+视觉模型

LLaV:一个拥有类似 GPT-4 的大语言+视觉模型 “使用机器生成的指令跟踪数据对大型语言模型 (LLM) 进行指令调优提高了新任务的零样本能力,但这一想法在多模式领域的探索较少。 所以,我们开始尝试使用纯语言 GPT-4 生成多模态语言图像指令跟踪数据。通过对此类生成的数据进行指令调整,并推出了 LLaVA:大型语言和视觉助手。 这是一种端到端训练的大型多模态模型,连接视觉编码器和 LLM 以实现通用视觉和语言理解。 早期实验表明,LLaVA 展示了令人印象深刻的多模型聊天能力,有时在看不见的图像 / 指令上表现出多模态 GPT-4 的行为,并且与合成多模态指令跟随数据集上的 GPT-4 相比,相对分数达到了 85.1%。 当在 Science QA 上进行微调时,LLaVA 和 GPT-4 的协同作用达到了 92.53%,这个准确率颇高。 因此,我们在 GitHub 正式开放 GPT-4 生成的视觉指令调整数据、模型和代码库。” |||||

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人