美国批准全球首个基因编辑药物,标志着一种前所未有的新型药物问世

美国批准全球首个基因编辑药物,标志着一种前所未有的新型药物问世 美国批准了世界上第一种采用 Crispr 技术(一种基因编辑技术)的药物,这是一项获得诺贝尔奖的发现,有望成为修改基因以治疗疾病和提高作物产量的强大新工具。 这种名为 Casgevy 的新疗法由 Vertex Pharmaceuticals 和 CRISPR Therapeutics 开发,周五获准用于治疗患有痛苦的镰状细胞病的人。 美国食品和药物管理局这一具有里程碑意义的决定预示着一种强大的新型药物的出现,这种药物可以关闭或替换基因来解决长期以来困扰医生和研究人员的疾病。 几家公司正在开发基于 Crispr 的疗法,用于治疗心脏病、癌症和罕见遗传性疾病等疾病。下一代基因编辑技术有望使治疗变得更容易,副作用更少。

相关推荐

封面图片

美FDA批准辉瑞针对血友病B的一次性基因疗法 每剂350万美元

美FDA批准辉瑞针对血友病B的一次性基因疗法 每剂350万美元 血友病属于一种先天性出血性疾病,一般是因为凝血因子异常所造成的,一旦发病就会伴随终身。其特征是凝血时间延长,终身具有轻微创伤后出血倾向,重症患者没有明显外伤也可发生“自发性”出血。FDA批准的这种基因疗法名为Beqvez,用于患有中度至重度血友病B的成年人。Beqvez是一种一次性治疗方法,使患者能够产生凝血因子IX并防止出血。如果没有这种被称为凝血因子IX的蛋白质,血友病B患者会更容易受伤,出血更频繁,持续时间更长。在试验中,它被证明优于标准治疗方法,减少了每周或每月定期静脉注射药物的需要。Beqvez通过减少医疗干预和治疗负担,有可能改变血友病B患者的生活。辉瑞公司发言人表示,该疗法将在本季度通过处方提供给符合条件的患者,不计保险和其他折扣的话,每剂价格高达350万美元,是迄今为止美国最贵的药物之一。宾夕法尼亚大学医学院血友病血栓形成综合项目主任Adam Cuker周五表示:“许多血友病B患者面临着定期输注因子IX的花费和生活方式的干扰,以及自发性出血事件,这些问题可能导致痛苦的关节损伤和行动问题。”Cuker补充说,辉瑞的药物有潜力通过减少长期的医疗和治疗负担,为患者带来变革性的影响。据世界血友病联合会的数据,全世界有超过3.8万人患有血友病B,但能负担得起Beqvez的人恐怕寥寥无几。这一批准对辉瑞来说是重要一步,该公司正试图在去年新冠业务迅速下滑后重新站稳脚跟。该公司已在抗癌药物和其他疾病领域的治疗上押下重注,以帮助其扭转业务颓势。辉瑞是投资于快速增长的基因和细胞疗法领域的少数几家公司之一,这些一次性、高成本的治疗针对患者的遗传来源或细胞,以治愈或显著改变疾病的进程。一些健康专家预计,这些疗法将取代人们用来管理慢性病的传统终身治疗。Beqvez将与澳大利亚的CSL Behring公司的Hemgenix竞争,后者是FDA批准的首个血友病B基因疗法,于2022年上市,价格也是每剂350万美元。值得注意的是,一些卫生专家表示,高昂的成本和物流问题等因素限制了Hemgenix和另一种批准的血友病A基因疗法的采用。 ... PC版: 手机版:

封面图片

眼下,一类针对KRAS基因突变的疗法逐渐兴起(这也是癌症中最常见的突变类型之一),Lumakras则是此类疗法中首个获批的药物。

眼下,一类针对KRAS基因突变的疗法逐渐兴起(这也是癌症中最常见的突变类型之一),Lumakras则是此类疗法中首个获批的药物。此前,研究人员曾耗时数年研发一种可以攻击此类突变的药物该突变曾被说成是“无药可医”。

封面图片

《.基因工程 》

《.基因工程 》 简介:通过直接修改生物体的遗传物质来实现特定目标的技术,主要依托DNA重组、基因编辑等手段,广泛应用于作物改良、疾病治疗和工业微生物改造等领域。其核心在于打破物种界限,定向调控生命特征。 亮点:具备CRISPR-Cas9等高精度基因剪刀工具,可靶向修正DNA序列;融合生物学、信息学与工程学思维,推动合成生物学发展;在癌症免疫治疗、抗逆作物培育等方面取得突破性进展,同时引发生物安全伦理讨论。 标签:#DNA重组 #基因编辑技术 #合成生物学 #医疗创新 #农业科技 #生物伦理 #CRISPR #跨学科应用 链接:https://pan.quark.cn/s/f31e08c4e604

封面图片

荷兰研究人员用CRISPR基因编辑疗法在实验室环境下“消灭”艾滋病毒

荷兰研究人员用CRISPR基因编辑疗法在实验室环境下“消灭”艾滋病毒 “分子剪刀”定向灭活HIV在此次医学会议上,荷兰阿姆斯特丹大学的研究人员提前发表了一项新研究,展示了如何使用最新的CRISPR-Cas基因编辑技术消除实验室环境下受感染细胞中的所有艾滋病病毒痕迹。该研究原计划于今年4月27日至30日在西班牙巴塞罗那举行的欧洲临床微生物学和传染病大会(ECCMID 2024)发表。相关研究由荷兰阿姆斯特丹大学医学中心的埃琳娜·埃雷拉-卡里略(Elena Herrera-Carrillo)博士及其团队成员包元玲(音)、于正浩(音)和帕斯卡·克鲁恩(Pascal Kroon)领导。据新华社报道,CRISPR全名为“成簇的、规律间隔的短回文重复序列”,原本是细菌防御病毒侵入的一种机制,被科学家用于编辑基因。法国科学家埃玛纽埃勒·沙尔庞捷和美国科学家珍妮弗·道德纳因为开发出相关技术而获得2020年诺贝尔化学奖。这项技术已成为可高效、精确、程序化修改细胞基因的工具。HIV治疗的重大挑战之一是该病毒具有将自身基因组整合到宿主DNA中的能力,尽管目前有多种有效的抗病毒药物用于治疗HIV感染,但只能抑制HIV在人体内的复制,无法将其清除,故患者需要接受终身抗病毒治疗,因为一旦抗病毒治疗停止,HIV可能会卷土重来。HIV可以感染体内不同类型的细胞和组织,每种细胞和组织都有其独特的环境和特征。荷兰研究人员对此表示, CRISPR-Cas的功能就像“分子剪刀”一样,在向导RNA (gRNA) 的指导下,可以在指定点切割DNA,他们正在寻找一种在所有这些情况下都可灭活艾滋病毒的方法,“我们的目标是开发一种强大且安全的组合CRISPR-Cas方案,可以在不同的细胞环境中灭活不同的艾滋病毒毒株。”在这项研究中,荷兰研究人员使用“分子剪刀”与两种gRNA来对抗所有已知的HIV 毒株中保持相同的病毒基因组部分,并成功治愈了HIV感染者的T细胞。荷兰研究人员进一步评估了来自不同细菌的各种CRISPR-Cas系统,并展示了saCas9和cjCas两个系统的应用结果。saCas9表现出出色的抗病毒性能,成功地用单个gRNA完全灭活HIV,并用两个gRNA切除HIV的DNA。荷兰研究人员证明,当在培养皿中的免疫细胞上进行测试时,他们的CRISPR系统可以灭活所有HIV病毒,将其从免疫细胞中清除。实际运用或仍需时日值得注意的是,荷兰阿姆斯特丹大学医学中心团队在医学会议上强调他们的工作仍然只是“概念证明”,不会很快成为HIV的治疗方法。英国诺丁汉大学干细胞和基因治疗技术副教授詹姆斯·迪克森博士对此表示同意,称完整的研究结果仍需要仔细审查,“需要做更多的工作来证明这些细胞测定的结果可以在未来的治疗中发生在整个身体中。在该疗法对HIV感染者产生影响之前,还需要进行更多的开发。”其他科学家也在尝试使用CRISPR来对抗HIV。美国生物制药公司Excision BioTherapeutics 2023年10月曾表示,三名感染HIV的志愿者在接受48周后的CRISPR疗法后没有出现严重的副作用。不过,伦敦弗朗西斯·克里克研究所的病毒专家乔纳森·斯托伊博士表示,尽管荷兰阿姆斯特丹大学医学中心团队的结果令人鼓舞,但下一步是在动物身上进行试验,最终在人体上进行试验,以证明这种治疗方法可以触及所有携带休眠艾滋病毒的免疫细胞。斯托伊指出,其中一些细胞被认为存在于骨髓中,但也可能涉及其他身体部位。“治疗的脱靶效应以及可能的长期副作用仍然令人担忧。”斯托伊说,“因此,即使假设这种基于CRISPR的疗法被证明是有效的,在任何此类基于CRISPR的疗法似乎还需要很多年的时间才可以成为常规疗法。” ... PC版: 手机版:

封面图片

科学家通过基因编辑诱使癌细胞自毁

科学家通过基因编辑诱使癌细胞自毁 创新的关键在于引入了两个新的"开关"。第一个开关能使改造细胞在接触某种药物时,超越并主宰癌细胞群的其他部分。第二个开关会释放一种毒素,杀死现在占主导地位的改造细胞及其未改造的邻近细胞。发表在《自然-生物技术》(Nature Biotechnology)上的一项研究强调,这种"双开关选择基因驱动"方法解决了现有癌症治疗方法的核心难题。一些癌细胞不可避免地会进化出抗药性机制,从而在治疗中存活下来。细胞可能会使药物失活,关闭药物靶向的通路,或做出其他分子改变以维持生命。为了应对这种情况,医生通常会使用多种药物组合,以不同的方式攻击肿瘤。然而,这些选择是有限的,尤其是对于缺乏有效治疗靶点的难治癌症。新技术采用了一种截然不同的方法。它不是寻找新的药物或靶点,而是利用肿瘤快速进化的能力来对付它。在概念验证实验中,研究人员使用了肺癌细胞和药物厄洛替尼。通常,厄洛替尼是通过阻断表皮生长因子受体蛋白的活化来发挥作用的,而表皮生长因子受体蛋白是细胞不受控制生长的驱动力。然而,科学家们改造了肺癌细胞,通过第一个"自杀基因"来逆转厄洛替尼的作用,使细胞产生抗药性,并在接触药物后迅速增殖。将厄洛替尼应用于混合修饰和未修饰的癌细胞,可使经过编辑的细胞迅速成为肿瘤样本中的主要群体。一旦达到这种效果,研究人员就停止给药。然后,他们用一种名为 5-FC 的无害化合物激活了第二个"自杀基因"。这种基因能表达一种酶,将 5-FC 转化为剧毒抗癌药物 5-FU。由于被编辑的细胞现在占了肿瘤的大部分,释放的毒素有效地杀死了整个癌细胞群。研究人员在患有非小细胞肺癌(最常见的肺癌类型)的小鼠身上测试了这种方法,发现经过改造的细胞在20天内就超越了原来的肿瘤。到第80天,肿瘤完全消退。研究小组目前正努力在其他癌症类型和药物组合上测试这种方法。如果试验成功,它将为战胜癌症提供一种新方法。 ... PC版: 手机版:

封面图片

工程化mRNA将人体变成药物制造生物工厂

工程化mRNA将人体变成药物制造生物工厂 信使核糖核酸(mRNA)包含指导细胞利用其内在机制制造特定蛋白质的指令。许多人都知道mRNA,因为它与 COVID-19 疫苗有关。但 mRNA 的潜在用途远不止于此,它还可以作为一种基于基因的治疗方法来治疗一系列疾病。最近发表的一项研究详细介绍了这种用途。得克萨斯大学西南医学中心的研究人员利用工程化 mRNA 促使细胞分泌自身药物,成功治疗了小鼠的牛皮癣和癌症。UT西南大学生物医学工程与生物化学系教授、该研究的通讯作者丹尼尔-西格瓦特(Daniel Siegwart)说:"有朝一日,这项技术也许能让病人在药房甚至在家里接受每月一次的治疗,而不是经常去医院或门诊输液,这将大大提高他们的生活质量。"在 mRNA 研究取得最新进展的同时,利用纳米颗粒递送治疗药物领域也取得了进展。不过,大部分研究都是为了让细胞生成蛋白质,直接用于细胞内,或者间接触发细胞通路,如基因编辑所需的通路。在目前的研究中,研究人员采取了一种不同的方法,重点是让这些重要的蛋白质离开细胞,以便它们能在身体的其他部位发挥治疗作用。在细胞内,信号肽(SPs)就像"隐喻的运输标签"(研究人员的术语),引导根据基因指令产生的蛋白质到达需要它们的地方。一些信号肽能将蛋白质导向细胞核和线粒体等细胞内部,而另一些信号肽(称为分泌型信号肽)则能将蛋白质分泌到细胞外空间。有鉴于此,研究人员假设,可以将一种工程SP复制粘贴到mRNA编码中,使通常被限制在细胞内空间的蛋白质大胆地进入循环。他们分离出了一段mRNA,该mRNA能产生由因子VII(一种参与凝血的蛋白质)衍生的分泌型SP。然后,他们将这种编码 SP 的 mRNA 连接到四种不同的 mRNA 序列上,这些 mRNA 序列可产生某些蛋白质:mCherry(一种荧光蛋白,可提供是否从细胞中分泌的视觉线索)、红细胞生成素(一种参与造血的人类蛋白质)、etanercept(一种用于治疗炎症性疾病的治疗性蛋白质)和抗 PD-L1 (另一种用于治疗癌症的治疗性蛋白质)。在实验室中,当修饰过的mRNA被包装进脂质纳米颗粒并输送到细胞中时,细胞会将由这些mRNA制成的SP标记蛋白质分泌到细胞外的液体中。牛皮癣是一种引起皮肤炎症的自身免疫性疾病,当研究人员用经过修饰的编码药物 etanercept 的 mRNA 治疗患有牛皮癣的小鼠时,它们的皮肤斑块明显减少。当他们用经过修饰的编码抗-PD-L1的mRNA治疗患有结肠癌和转移性黑色素瘤的小鼠时,肿瘤生长明显减少,小鼠的存活时间是未治疗小鼠的两倍。研究人员说,利用他们的信号肽工程核酸设计(SEND)让人体自身的机器制造和输送治疗用蛋白质,可能会提高目前通过输液给药的蛋白质药物的疗效,并有助于克服与之相关的副作用。他们说,利用这种技术生产的药物可以改善炎症性疾病、癌症、凝血障碍、糖尿病和各种遗传性疾病患者的健康和生活质量。这项研究发表在《美国国家科学院院刊》(PNAS)上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人