近百年来,人类社会的发展剧烈地改变了地球的环境,而我们也正在为这种改变付出极大的代价所有与人类「大脑-肠道-微生物」相互作用改变

近百年来,人类社会的发展剧烈地改变了地球的环境,而我们也正在为这种改变付出极大的代价所有与人类「大脑-肠道-微生物」相互作用改变有关的疾病,在过去10 年中的盛行率都急剧上升,甚至已达到危及公共卫生的水平线。在相关医疗卫生系统和制药工业集团的支持下,这些疾病的致死率虽然没有显著升高,但整体盛行率仍在持续上升。可见,目前人类的寿命增长了,但健康品质却严重下降。 在这本开创性的医学科普新作中,胃肠道疾病领域先驱埃默伦·迈耶博士基于40年的科学研究,证明肠道微生物组在21世纪人类健康危机中发挥关键作用。迈耶博士在书中全面探讨了肠道微生物组的改变与抑郁症、自闭症、糖尿病、心血管疾病病和癌症等慢性疾病发展之间的必然联系,以及有关Covid-19等传染病易感性的前沿研究。 迈耶博士认为,应对公共卫生危机,关键在于遏制慢性病和传染性疾病的发生率。为了扭转慢性病和传染病的发展趋势,我们必须改变今天的生活方式,限时进食,改善新陈代谢,更好地控制基于肠道的免疫系统和微生物系统,充分利用食物的自然治愈力,预防食品体系对人类健康造成的有害影响。 麦耶博士相信,未来我们必将战胜病毒大流行,在这个紧要关头,我们更要正视健康警钟的鸣响,切实可行地透过健康新举措造福人类,让我们更健康、更长寿。 作者简介 · · · · · · 【美】艾默伦‧迈耶(Emeran Mayer),医学博士,过去40年一直致力于研究大脑-身体相互连结的研究,特别强调大脑-肠道连结。他被认为是脑-肠微生物群相互作用和慢性内脏痛领域的先驱和世界领导者。 他是奥本海默压力与复原力神经生物学中心的执行主任,也是加州大学洛杉矶分校消化疾病研究中心的共同主任。他的研究在过去25年中一直得到美国国立卫生研究院的支持。 他的研究成果曾被美国国家公共广播电台(NPR)、美国公共电视网(PBS)、纪录片《寻找平衡》(In Search of Balance)等广泛报导。他的作品经常发表于《大西洋月刊》《科学人》《纽约时报》《卫报》等出版品。

相关推荐

封面图片

哈佛和麻省理工学院科学家发现肠道中能破坏胆固醇的微生物

哈佛和麻省理工学院科学家发现肠道中能破坏胆固醇的微生物 研究发现,在胆固醇水平降低的人群中,有多种细菌能代谢胆固醇。肠道微生物群的变化与一系列疾病有关,如 2 型糖尿病、肥胖症和炎症性肠病。现在,麻省理工学院和哈佛大学布罗德研究所以及麻省总医院的一个研究小组发现,肠道中的微生物也可能影响心血管疾病。在发表于《细胞》(Cell)杂志的一项研究中,研究小组确定了在肠道中消耗胆固醇的特定细菌种类,它们可能有助于降低人体内的胆固醇和心脏病风险。拉姆尼克-泽维尔实验室、布罗德代谢组学平台的成员和合作者分析了弗拉明汉心脏研究(Framingham Heart Study)1400 多名参与者的代谢物和微生物基因组。研究小组发现,一种名为"颤螺旋菌"(oscillibacter)的细菌会吸收并代谢周围环境中的胆固醇,肠道中这种微生物含量较高的人胆固醇水平较低。他们还确定了这种细菌可能用来分解胆固醇的机制。这些结果表明,以特定方式操纵微生物组的干预措施有朝一日可能有助于降低人体内的胆固醇。这些发现还为更有针对性地研究微生物组的变化如何影响健康和疾病奠定了基础。泽维尔是布罗德研究所的核心成员、免疫学项目主任和传染病与微生物组项目联合主任。他还是哈佛医学院和麻省总医院的教授。泽维尔实验室的博士后研究员李晨皓和研究科学家马丁-斯特拉扎尔是这项研究的共同第一作者。在过去的十年中,其他研究人员发现了肠道微生物组的组成与心血管疾病因素之间的联系,如人的甘油三酯和餐后血糖水平。但科学家们还无法针对这些联系采取治疗措施,部分原因是他们对肠道内的代谢途径缺乏全面的了解。在这项新研究中,布罗德团队更全面、更详细地了解了肠道微生物对新陈代谢的影响。他们将枪式元基因组测序技术与代谢组学技术相结合,枪式元基因组测序技术能分析样本中所有微生物的DNA,代谢组学技术能测量数百种已知和数千种未知代谢物的水平。他们利用这些工具研究了弗雷明汉心脏研究的粪便样本。斯特拉扎尔说:"项目成果强调了高质量、经过整理的患者数据的重要性。这使我们能够注意到那些非常微妙且难以测量的效果,并直接对其进行跟踪。"这种方法发现了微生物与代谢特征之间的 16000 多种关联,其中有一种关联特别强烈:与缺乏相关属种细菌的人相比,体内有几种颤螺旋菌属细菌的人胆固醇水平较低。研究人员发现,该属细菌在肠道中的数量惊人,平均每 100 个细菌中就有 1 个。研究人员随后想弄清微生物分解胆固醇的生化途径。为此,他们首先需要在实验室中培养这种生物。幸运的是,实验室多年来一直在收集粪便样本中的细菌,为此他们建立了一个独特的菌种库,其中也包括颤螺旋菌。在成功培育出这种细菌后,研究小组利用质谱法确定了细菌中胆固醇代谢最可能产生的副产品。这使他们能够确定细菌降低胆固醇水平的途径。他们发现,细菌将胆固醇转化为中间产物,然后再由其他细菌分解并排出体外。接下来,研究小组利用机器学习模型确定了负责这种生化转换的候选酶,然后在实验室中的某些颤螺旋菌中检测到了这些酶和胆固醇分解产物。研究小组发现了另一种肠道细菌 - 产粪甾醇真杆菌(Eubacterium coprostanoligenes),它也有助于降低胆固醇水平。这种细菌携带一种基因,科学家们此前已经 先前已经证明参与胆固醇代谢。在新的研究中,研究小组发现,Eubacterium 可能与Oscillibacter对胆固醇水平有协同作用,这表明,研究细菌物种组合的新实验可能有助于揭示不同微生物群落如何相互作用影响人类健康。人类肠道微生物组中的绝大多数基因仍未定性,但研究小组相信,他们在确定胆固醇代谢酶方面取得的成功,为发现受肠道微生物影响的其他类似代谢途径铺平了道路,这些代谢途径可以作为治疗靶点。"有许多临床研究试图进行粪便微生物组转移研究,但对微生物之间以及微生物与肠道之间如何相互作用却不甚了解,"李说。"我们希望先退一步,专注于一种特定的微生物或基因,我们就能系统地了解肠道生态学,并提出更好的治疗策略,比如针对一种或几种微生物进行治疗。""由于肠道微生物组中存在大量功能未知的基因,我们预测代谢功能的能力还存在差距,"他补充说。"我们的工作强调了肠道微生物可能改变其他固醇代谢途径的可能性。我们可能会有很多新发现,这些发现将使我们更接近于从机理上理解微生物是如何与宿主相互作用的。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

由超级蠕虫微生物群制成的"超级肠道"能吞噬问题塑料

由超级蠕虫微生物群制成的"超级肠道"能吞噬问题塑料 在这项新研究中,新加坡南洋理工大学(NTU Singapore)的研究人员在此前对这些耐寒黄粉虫的微生物组进行研究的基础上,构建了一个可扩展的生物体特殊肠道环境副本,他们认为该副本能够可持续地处理大量普通塑料。虽然科学家们早就知道蠕虫对塑料的胃口,但与许多生物技术一样,问题在于如何将其应用于现实世界。这种"超级肠道"背后的团队可能已经破解了这一密码。在这个过程中,很少有蠕虫受到伤害。南洋理工大学副教授曹斌说:"一只蠕虫一生只能够消耗大约几毫克塑料,因此可以想象,如果我们要依靠它们来处理塑料垃圾,需要多少蠕虫。我们的方法将蠕虫从等式中剔除,从而消除了这种需求。我们的重点是增强蠕虫肠道中有用的微生物,并建立一个能有效分解塑料的人工'蠕虫肠道'。"祝您好胃口:菜单上有高密度聚乙烯、聚丙烯和聚苯乙烯 新加坡南洋理工大学研究小组首先给三组蠕虫喂食了三种不同的普通塑料众所周知难以分解的高密度聚乙烯(HDPE)、聚丙烯(PP)和聚苯乙烯(PS),为期 30 天(幸运的对照组则食用燕麦粥)。随后,科学家们从啃食塑料的蠕虫内脏中提取了微生物组,并将其放入装有合成营养物质和三种塑料的烧瓶中培养,让它们在六周内发育成人工肠道。他们发现,与对照组的蠕虫相比,实验室培养的蠕虫肠道中产生了更多的塑料降解细菌,而且每种细菌在处理特定材料时都表现出更高的效率。研究人员(左起)Sakcham Bairoliya、曹斌和刘一楠博士这项研究的第一作者刘一楠博士说:"我们的研究是首次成功尝试从喂食塑料的蠕虫肠道微生物组中培养塑料相关细菌群落。通过将肠道微生物组暴露在特定条件下,我们能够提高人工'蠕虫肠道'中塑料降解细菌的丰度,这表明我们的方法是稳定的,可以大规模复制。"虽然这只是概念验证,但研究人员认为,在更大范围内培育这种人工"超级肠道"并不存在障碍,而且这种人工"超级肠道"还可以专门用于处理特定材料。他们现在正在研究蠕虫坚韧肠道过程背后的分子生物学,希望能更容易地设计出分解塑料的细菌群落,用于商业用途。这项研究发表在《国际环境》杂志上。 ... PC版: 手机版:

封面图片

Cell子刊:你身体上的微生物群就像指纹一样独一无二

Cell子刊:你身体上的微生物群就像指纹一样独一无二 这是科学家对86人的肠道、口腔、鼻子和皮肤微生物群进行详细研究后得出的结论。在六年的时间里,在每个人的微生物群中存活得最好的细菌是那些对个人最特殊的细菌,而不是整个人群共有的细菌。“我们的研究结果强调了这样一种观点,即我们每个人的体内都有个性化的微生物组,这对我们来说是特殊的,你的基因、饮食和免疫系统都在塑造这个生态系统。”斯坦福大学医学院遗传学教授Michael Snyder博士说。这项新研究由Michael Snyder与George Weinstock(2023年去世)合作领导完成,这是美国国立卫生研究院综合人类微生物组项目的一部分,并在线发表在《细胞宿主与微生物》杂志上。该研究还发现了微生物组与健康之间的几种相关性:例如,2型糖尿病患者的微生物组不太稳定,多样性也较差。“我们认为,随着胰岛素抵抗,血液中脂质、蛋白质和其他代谢物的改变会改变微生物群可利用的营养物质,并影响这些细菌的生长,”遗传学博士后学者、该论文的第一作者Xin Zhou博士说。长期跟踪科学家们最近对人类微生物群在健康和疾病中的作用有了新的认识。但是,微生物群的庞大规模一个普通人体内大约有39万亿个微生物,以及它不断变化的事实,使得研究变得困难。研究人员一直在努力确定是否存在一种理想的微生物组组成,以及改变某人的微生物是否可以减轻疾病。这组研究人员追踪人们的微生物组长达六年,希望更好地了解个体体内的微生物是如何随着短期感染或慢性疾病的发作而变化的。他们每季度从86名年龄在29岁到75岁之间的人的粪便、皮肤、口腔和鼻子中收集微生物组样本。当参与者患有呼吸道疾病、接种了疫苗或服用了抗生素时,在五周的时间里,研究人员额外采集了三到七个样本。每个微生物组样本都进行了基因测序,以揭示其所含的细菌。与此同时,研究人员收集了大量关于参与者健康的其他临床数据,以研究各种因素如何与微生物组的变化相关。研究人员总共分析了5432个生物样本,产生了118,124,374个测量值。Snyder说:“在这么长的一段时间里,研究来自不同身体部位的微生物,让我们第一次把整个微生物群看作一个单一的流体系统。”注重稳定性这项新研究证实了之前的研究发现,揭示了在健康人的微生物组中经常发现的少数细菌,以及在感染和其他疾病期间人体微生物组的显著变化。然而,比单个细菌类型更能说明问题的是微生物组的稳定性。在健康时期,一个人的微生物组很少发生剧烈变化。在感染或糖尿病的发展过程中,构成微生物组的细菌波动更大。“我们发现,当你生病时,比如感冒,你的微生物群会发生这种暂时的变化;它变得非常失调,对于糖尿病来说,这种特征在很多方面都是一样的,除了它是长期的而不是暂时的。”Zhou说。当研究人员专注于哪些微生物在多年的过程中最有可能发生变化时,他们惊讶地发现,对个体来说最特殊的细菌是最稳定的。Snyder说:“很多人会怀疑我们之间共有的细菌是最重要的,因此也是最稳定的。我们发现了完全相反的情况个人微生物群是最稳定的。这进一步表明,我们的个人微生物群与其他人的个人微生物群不同,对我们的健康至关重要。这是有道理的,因为它们都有不同的健康基线。”数据带来了另一个惊喜:身体不同部位的微生物组是高度相关的。即使存在不同类型的细菌,当一个身体部位的微生物群发生变化时,其他部位也会发生变化。例如,如果在呼吸道感染开始时鼻腔细菌发生变化,肠道、口腔和皮肤微生物也会迅速开始发生变化。当肠道细菌随着糖尿病发生变化时,皮肤、口腔和鼻子上的细菌也会发生变化。与健康的联系根据整个研究过程中采集的血液样本,研究小组怀疑免疫系统是连接身体不同部位微生物的共同纽带,也是连接微生物群整体健康的纽带。血液中某些免疫蛋白的水平随着微生物群的变化而同步变化。此外,血脂血液中的脂肪也与微生物群稳定性的变化有关,这解释了与糖尿病的一些联系。该小组指出了几个影响微生物群形成的环境因素:例如,微生物随着季节的变化而发生可预测的变化,可能是由于湿度和阳光水平的变化以及新鲜食物的供应。但是这些环境因素,包括饮食,仍然不能解释人与人之间的差异。研究人员说,新的数据否定了存在一个黄金标准的微生物群的想法,即每个人都应该努力达到最佳健康状态。“相反,我们正在朝着这样一个想法前进,即我们拥有一个个人微生物组,它对我们自己的代谢和免疫健康非常重要。我们的新陈代谢和免疫健康也会极大地影响我们的微生物群它们都是联系在一起的。人与人之间的微生物组差异很大,你如何喂养它,它接触到什么,可能会对你的健康产生重大影响,我们还需要从很多方面解决这个问题。”Snyder说。 ... PC版: 手机版:

封面图片

新型试验小鼠拥有100%功能性人类免疫系统和近似人类肠道微生物群

新型试验小鼠拥有100%功能性人类免疫系统和近似人类肠道微生物群 德克萨斯大学圣安东尼奥健康科学中心的研究人员成功地改造出了一种具有与人类相同免疫反应的小鼠,而这正是之前许多研究人员失败的地方。虽然小鼠在研究中很常见,而且被认为是最好的工作动物之一,但它们远非完美的人类替代品。一个主要的挑战是小鼠体内的许多基因与人类基因不同,因此它们的免疫系统与我们的免疫系统反应截然不同。这种新型小鼠被称为 TruHuX或 THX,它将使研究障碍成为过去。这种小鼠拥有功能完备的人体免疫系统,最终会像我们任何人一样对治疗做出反应。领导这项开创性研究的医学博士保罗-卡萨利(Paolo Casali)说:"THX 小鼠为人类免疫系统研究、人类疫苗开发和疗法测试提供了一个平台。"那么,这对医学研究之外的所有人意味着什么呢?它有可能大大加快药物和免疫疗法的研发速度,缩短"试验和出错"的时间,让科学家们能够在对疗效和安全性更有信心的情况下将治疗方法用于人体试验。卡萨利还认为,THX 小鼠可以取代目前在非人灵长类动物身上进行的免疫学和微生物学测试。小鼠还为新的癌症免疫疗法、细菌和病毒疫苗开发以及疾病建模打开了大门。在未来的某个时刻,技术很可能会促进复杂的人工模型的创造,以取代动物进行医学测试,但遗憾的是,在此之前,它仍然是药物开发和疾病研究的重要组成部分。几十年来,科学家们一直在努力完善人源化小鼠。第一个模型是在 20 世纪 80 年代设计的,用于模拟人类艾滋病病毒感染和机体对艾滋病病毒的反应,现在仍然是研究的重要组成部分。迄今为止,科学家们通过向免疫缺陷小鼠注射人类外周淋巴细胞、未成熟造血干细胞或其他人类细胞来建立这种模型。但这些小鼠的寿命往往很短,会因"人性化"而出现一系列健康问题,而且与其他小鼠模型存在同样的问题,即它们的免疫系统会做出与人类截然不同的反应。卡萨利的团队还从免疫缺陷小鼠(NSG W41突变体)开始,通过动物左心室注射从脐带血中提纯的人类干细胞。经过数周时间让移植细胞沉淀后,再用17b-雌二醇(E2)雌激素对小鼠进行激素调节。研究小组之前的研究发现,这种强效雌激素能促进干细胞存活和淋巴细胞分化,并激活抗体以应对病毒和细菌。归根结底,THX 是一种"超人类"小鼠,拥有完整的人类免疫系统淋巴结、生殖中心、胸腺人类上皮细胞、人类 T 淋巴细胞和 B 淋巴细胞、记忆性 B 淋巴细胞和浆细胞而且可以做出与人类相同的反应。研究小组目前正在利用 THX 小鼠更好地了解人类对 SARS-CoV-2 的免疫反应,并研究参与人类浆细胞活性及其抗体反应的表观遗传因素,这有可能开启新的病毒和癌症疗法。这项研究发表在《自然-免疫学》杂志上。 ... PC版: 手机版:

封面图片

《炎症:食物、微生物和疾病的故事 》

《炎症:食物、微生物和疾病的故事 》 简介:炎症:食物、微生物和疾病的故事是一本深入探讨其核心主题的著作,作者通过大量案例分析与深入研究,提供了对相关问题的独特见解。书中详细介绍了该领域中的关键点,帮助读者更好地理解和掌握相关知识,适合各类读者阅读。更多详情请访问相关链接。 标签: #炎症:#炎症:食物、微生物和疾病的故事#书籍 文件大小:NG 链接:https://pan.quark.cn/s/7ad7cd5a9b29

封面图片

研究发现度假者的日晒偏好会改变皮肤微生物群的组成和多样性

研究发现度假者的日晒偏好会改变皮肤微生物群的组成和多样性 研究表明,假日暴晒会迅速但暂时地影响皮肤微生物群,特别是变形菌,从而影响皮肤健康和恢复动态。研究人员发现,过多的阳光照射会对皮肤细菌的短期多样性和组成产生负面影响。长期暴露于紫外线与皮肤细胞中DNA的损伤、炎症和皮肤过早老化有关,但故意晒太阳的行为仍然很普遍。由于缺乏对个人行为如何影响紫外线相关微生物群变化以及这与皮肤健康之间关系的研究,英国的研究人员现在研究了寻求阳光的行为对度假者皮肤微生物群组成的影响。曼彻斯特大学首席研究员、发表在《老龄化前沿》(Frontiers in Aging)杂志上的这项研究的通讯作者阿比盖尔-兰顿(Abigail Langton)博士说:"我们在一组度假者身上发现,他们的日晒行为对皮肤微生物群的多样性和组成有很大影响。我们已经证明,晒黑皮肤与度假后立即降低变形杆菌丰度有关。然而,所有度假者的微生物群在他们停止长时间晒太阳几周后都得到了恢复"。晒太阳会伤害皮肤菌落在前往阳光明媚的目的地度假(至少持续七天)之前,研究人员对参与者的皮肤进行了分析。皮肤微生物群主要由表面的三种细菌群落组成:放线菌、变形菌和厚壁菌,在度假后的第 1 天、第 28 天和第 84 天,研究人员再次对参与者的皮肤微生物群进行了评估。此外,每位度假者还根据个人的晒黑反应被分配到一个小组。21 名参与者中有 8 人在度假期间晒黑了皮肤,他们被视为"寻求者"。晒黑"组由 7 人组成,他们在出发时已经晒黑,并在整个假期中保持晒黑。这两组人被归类为"寻求阳光者"。其余六名参与者被视为"避免晒太阳者";他们的肤色在度假前和度假后都是一样的。这项研究的第一作者、曼彻斯特大学研究员托马斯-威尔莫特(Thomas Willmott)博士解释说:"这项研究是在现实生活中的度假者身上进行的,它为我们提供了重要的见解,让我们了解日晒是如何导致晒黑反应的即使是在相对较短的日照时间内也会导致变形杆菌丰度的急剧下降,从而降低皮肤微生物群的多样性。"尽管变形菌迅速减少,皮肤微生物群的多样性也随之发生变化,但细菌群落结构在人们度假归来 28 天后已经恢复。威尔莫特继续说:"这表明,度假时暴露在紫外线下会对皮肤微生物群产生急性影响,但一旦回到阳光较弱的气候环境中,恢复速度相对较快。"微生物群紊乱可导致健康问题蛋白质细菌在皮肤微生物群中占主导地位。兰顿指出:"因此,微生物群迅速恢复以重建皮肤的最佳功能条件也就不足为奇了。更令人担忧的可能是微生物群多样性的快速改变,这与疾病状态有关。例如,皮肤细菌丰富度的降低以前与皮炎有关。特别是变形杆菌多样性的波动与湿疹和牛皮癣等皮肤问题有关。"研究人员指出,未来的研究应该探讨为什么蛋白细菌似乎对紫外线特别敏感,以及这种多样性的变化如何长期影响皮肤健康。理想的情况是,此类研究的目标是增加参与者的数量,以便进一步深入了解情况。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人