科学家发现金属裂纹可自我修复

科学家发现金属裂纹可自我修复 科学家首次目睹了断裂的金属碎片在没有任何人为干预的情况下融合在一起,这一过程推翻了基本的科学理论。如果能将这种新发现的现象加以利用,可能会引发一场工程革命:自我修复的发动机、桥梁和飞机可以逆转磨损造成的损害,从而更安全、更耐用。疲劳损伤是机器磨损并最终损坏的一种方式。反复的应力或运动导致微观裂纹的形成。随着时间推移,这些裂纹会生长和扩散,直至断裂。2013 年,时任 MIT 材料科学与工程系助理教授、现得克萨斯农工大学教授 Michael Demkowicz 开始研究传统材料理论。他发表了一项基于计算机模拟结果的新理论,认为在某些条件下,金属应该能够修复由磨损形成的裂纹。最新发现证明 Demkowicz 的理论是正确的。关于金属自修复过程还有很多未知数,包括它是否会成为制造业中的实用工具。来源 ,, 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

相关推荐

封面图片

麻省理工学院科学家发现极端条件下金属的“反直觉”行为

麻省理工学院科学家发现极端条件下金属的“反直觉”行为 麻省理工学院的科学家们发现,铜等金属在加热和高速撞击时会变得更坚固,这对传统观点提出了挑战,并有可能增强用于太空和高速制造等极端环境的材料。金属受热后会变得更软,这就是铁匠如何通过将铁加热至滚烫将其塑造成复杂形状的原因。任何人将铜线与钢衣架进行比较,都会很快发现铜比钢柔韧得多。但麻省理工学院的科学家们发现,当金属被超高速运动的物体撞击时,情况恰恰相反:金属温度越高,强度越大。在这些对金属造成极大压力的条件下,铜实际上和钢一样坚固。这一新发现可能为极端环境下的材料设计带来新的方法,例如保护宇宙飞船或高超音速飞机的防护罩,或高速制造工艺的设备。麻省理工学院研究生伊恩-道丁和麻省理工学院材料科学与工程系前系主任、现任西北大学工程学院院长兼麻省理工学院客座教授克里斯托弗-舒赫最近在《自然》杂志上发表的一篇论文中描述了这一发现。反直觉的结果和潜在应用作者写道,这一新发现"违背直觉,与几十年来在不太极端条件下进行的研究相悖"。这些意想不到的结果可能会影响各种应用,因为这些撞击所涉及的极端速度经常发生在陨石撞击轨道上的航天器,以及用于制造、喷砂和某些增材制造(3D 打印)工艺的高速加工操作中。研究人员用来发现这种效应的实验是将直径仅为百万分之一米的蓝宝石微粒射向平整的金属板。在激光束的推动下,这些微粒达到了每秒几百米的高速度。虽然其他研究人员偶尔也做过类似的高速实验,但他们往往使用更大的冲击器,即厘米或更大的冲击器。由于这些较大的撞击主要受到撞击冲击的影响,因此无法将机械效应和热效应区分开来。说明:麻省理工学院的科学家发现,当金属被高速运动的物体以极快的速度变形时,较高的温度会使金属变得更坚固,而不是更脆弱。图中,3 个粒子以大致相同的速度撞击金属表面。随着金属初始温度的升高,反弹速度更快,颗粒弹得更高,因为金属也变得更硬而不是更软。图片来源:研究人员提供研究小组使用超高速摄像机跟踪粒子。研究数据中的这个序列显示了一个粒子飞入并从表面反弹的过程。资料来源:麻省理工学院新研究中的微小粒子在撞击目标时不会产生明显的压力波。但麻省理工学院经过十年的研究,才开发出以如此高的速度推动这种微小粒子的方法。"我们利用了这一点,"舒赫说,同时还利用了其他新技术来观测高速撞击本身。观察和调查结果他说:"研究小组使用了超高速摄像机来观察粒子的来去。当粒子从表面反弹时,进入和飞出速度之间的差异"告诉你有多少能量沉积"到目标中,这是表面强度的指标。"研究人员使用的微粒由氧化铝或蓝宝石制成,"非常坚硬"。这些微粒直径为 10 到 20 微米(百万分之一米),厚度为头发丝的十分之一到五分之一。当这些微粒背后的发射台被激光束击中时,部分材料会汽化,产生一股蒸汽,将微粒推向相反的方向。研究小组使用超高速摄像机跟踪粒子。研究数据中的这个序列显示了一个粒子飞入并从表面反弹的过程。资料来源:麻省理工学院研究人员将微粒射向铜、钛和金的样品,他们希望他们的结果也适用于其他金属。他们说,他们的数据首次为这种热量越大强度越高的反常热效应提供了直接的实验证据,尽管以前也有报道暗示过这种效应。根据研究人员的分析,这种令人惊讶的效应似乎是构成金属结晶结构的有序原子阵列在不同条件下移动的方式造成的。他们的研究表明,金属在应力作用下的变形受三种不同效应的支配,其中两种效应遵循预测的轨迹,即在温度越高时变形越大,而当变形率超过一定临界值时,第三种效应(即阻力强化)的作用会发生逆转。阻力增强效果超过这个交叉点后,较高的温度会增加材料内部声子(声波或热波)的活动,这些声子与晶格中的位错相互作用,限制了它们滑动和变形的能力。道丁说,这种效应随着撞击速度和温度的增加而增强,因此"速度越快,位错的反应能力就越弱"。当然,在某些时候,升高的温度会使金属开始熔化,这时,效果又会发生逆转,导致软化。道丁说,这种强化效应"会有一个极限","但我们不知道它是什么"。舒赫说,这些发现可能会促使人们在设计可能会遇到这种极端应力的设备时选择不同的材料。例如,在通常情况下可能弱得多,但成本较低或更容易加工的金属,可能会在以前没有人想到要使用它们的情况下派上用场。研究人员所研究的极端条件并不局限于航天器或极端制造方法。道丁说:"如果你在沙尘暴中驾驶直升机,很多沙粒在撞击叶片时会达到很高的速度。"研究人员用来揭示这一现象的技术可以应用于其他各种材料和情况,包括其他金属和合金。他们说,简单地根据已知材料在不太极端条件下的特性来设计在极端条件下使用的材料,可能会导致人们对材料在极端应力下的行为产生严重的错误预期。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家在月球上发现异常岩石

科学家在月球上发现异常岩石 现在,由明斯特大学的奥塔维亚诺-吕施博士领导的一个国际研究小组首次在月球表面发现了一米大小的异常岩石,这些岩石被尘埃覆盖,可能表现出独特的性质比如磁性异常。科学家们最重要的发现是,月球上只有极少数巨石上有一层具有非常特殊反射特性的尘埃。例如,这些新发现的巨石上的灰尘反射阳光的方式与之前已知的岩石不同。这些新发现有助于科学家了解月壳的形成和变化过程。研究结果发表在《地球物理研究-行星》杂志上。月球磁异常和反射特性众所周知,月球表面有磁性异常现象,特别是在一个叫做莱纳伽马的区域附近。然而,人们从未研究过岩石是否具有磁性的问题。行星学研究所的奥塔维亚诺-吕施(Ottaviano Rüsch)在归类这一发现时说:"目前对月球磁性的了解非常有限,因此这些新岩石将揭示月球及其磁核的历史。""我们首次研究了尘埃与莱纳伽马地区岩石的相互作用,更准确地说,是这些岩石反射特性的变化。例如,我们可以推断出这些大岩石对阳光的反射程度和方向"。这些图像是由美国国家航空航天局(NASA)的绕月勘测轨道飞行器(Lunar Reconnaissance Orbiter)拍摄的。利用人工智能进行月球探测研究小组最初感兴趣的是裂开的岩石。他们首先利用人工智能在约一百万张图片中搜索破裂的岩石这些图片也是由月球勘测轨道器拍摄的。伯尔尼大学太空与宜居性中心的瓦伦丁-比克尔(Valentin Bickel)说:"现代数据处理方法让我们能够对全球环境有全新的认识同时,我们也不断通过这种方式发现未知物体,比如我们在这项新研究中调查的异常岩石。搜索算法确定了大约 13 万块有趣的岩石,其中一半由科学家进行了仔细研究。""我们仅在一张图片上就认出了一块有明显暗区的巨石。这块岩石与其他岩石截然不同,因为与其他岩石相比,它向太阳散射的光线较少。我们怀疑这是由于特殊的尘埃结构造成的,比如尘埃的密度和粒度,"Ottaviano Rüsch 解释说。"通常情况下,月球尘埃多孔,会将大量光线反射回照明方向。然而,当尘埃被压实时,整体亮度通常会增加。多特蒙德工业大学的马塞尔-赫斯(Marcel Hess)补充说:"观测到的被尘埃覆盖的岩石并非如此。这是一个引人入胜的发现然而,科学家们对这种尘埃及其与岩石的相互作用的了解仍处于早期阶段。在接下来的几周和几个月里,科学家们希望进一步研究导致尘埃与岩石相互作用以及形成特殊尘埃结构的过程。这些过程包括,例如,由于静电荷或太阳风与当地磁场的相互作用而导致尘埃上升。未来研究与月球探索除了其他许多国际无人太空任务外,美国国家航空航天局(NASA)还将在未来几年内向雷纳伽马地区派出一个自动漫游车,以寻找类似类型的带有特殊尘埃的巨石。即使这仍然是未来的梦想,但更好地了解尘埃的运动也有助于规划人类在月球上的定居点等。毕竟,我们从阿波罗宇航员的经验中知道,尘埃会带来许多问题,如污染居住地(如空间站)和技术设备。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

地球科学家发现太平洋板块隐藏的断层

地球科学家发现太平洋板块隐藏的断层 研究人员在《地球物理研究快报》(Geophysical Research Letters)杂志上发表的一篇论文中描述了他们的发现。论文作者包括多伦多大学文理学院地球科学系博士后研究员 Erkan Gün 和 Russell Pysklywec 教授、多伦多大学士嘉堡分校物理与环境科学系助理教授 Phil Heron 以及伊斯坦布尔理工大学欧亚地球科学研究所的研究人员。完善板块构造理论"我们知道,断层等地质变形发生在远离板块边界的大陆板块内部,"Gün说。"但我们不知道同样的事情也发生在海洋板块上。我们正在做的是完善板块构造描述地球如何运作的理论并表明这些板块确实不像我们之前想象的那样原始。"数百万年来,构成大部分洋底的太平洋板块向西漂移,沿着从日本到新西兰和澳大利亚的海底海沟或俯冲带坠入地幔。当板块的西部边缘被拉入地幔时,它拖着板块的其他部分,就像桌布被从桌子上拉下来一样。该地图以黄色标出了太平洋板块被沿太平洋火环下沉的构造板块拉开的区域。资料来源:Erkan Gün & Russell Pysklywec/多伦多大学新发现的板块断层破坏发生在数百万年前地幔中的熔岩挤压到洋底时形成的广阔的洋底高原上;这些断层往往与最近的海沟平行。"人们认为,由于洋底高原更厚,它们应该更坚固,"Gün 说,"但我们的模型和地震数据显示,实际情况恰恰相反:高原更薄弱。但我们的模型和地震数据显示,实际情况恰恰相反:高原更薄弱了。"如果说太平洋板块就像一块桌布被拉过桌面,那么高原就是一块较薄弱的桌布,更容易被撕裂。对了解大洋板块的影响研究人员研究了西太平洋的四个高原翁通爪哇、沙茨基、赫斯和马尼希基,它们位于夏威夷、日本、新西兰和澳大利亚大致相邻的广阔区域。他们利用超级计算机模型和现有数据(其中一些数据是在 20 世纪 70 年代和 80 年代的研究中收集的)得出了这一发现。"有证据表明,过去由于这种类型的板块破坏,这些地点曾发生过火山活动可能是偶发的,也可能是持续发生的但现在是否发生还不清楚,"Gün说。"尽管如此,我们还是无法确定,因为这些高原位于海面以下数千米处,而派遣科考船收集数据是一项艰巨的任务。因此,事实上,我们希望我们的论文能引起人们对高原的关注,从而收集到更多的数据。"数十年来,众多地球科学家对板块构造理论进行了不断完善,其中包括华盛顿大学的约翰-图佐-威尔逊(John Tuzo Wilson),他在自己的职业生涯中为这一理论做出了重大贡献。Pysklywec 说:"但理论并非一成不变,我们仍在不断发现新的东西。现在我们知道这种断层破坏正在撕裂海洋板块的中心这可能与地震活动和火山活动有关。"他说:"这样的新发现颠覆了我们对活跃地球的理解和认识。这表明,即使是我们这个不断进化的星球的大运行,也仍然存在着巨大的奥秘。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

【澳洲科学家研发出可自我修复太阳能电池板,能大幅延长卫星寿命】这种太阳能电池板使用了钙钛矿,一种含有钙和钛的氧化物矿物,科学家们

【澳洲科学家研发出可自我修复太阳能电池板,能大幅延长卫星寿命】这种太阳能电池板使用了钙钛矿,一种含有钙和钛的氧化物矿物,科学家们发现,在真空中加热时,钙钛矿太阳能电池的辐射损伤可以逆转。在地球上的模拟测试中显示,降低效率的太阳能电池板在加热后可以恢复到原来的效率,而太阳恰好是一台完美的空间加热器。 #抽屉IT

封面图片

科学家发现了一种诱导和控制金属极化和极性状态的方法

科学家发现了一种诱导和控制金属极化和极性状态的方法 最近,浦项科技大学(POSTECH)物理系的 Daesu Lee 教授、首尔国立大学(SNU)物理和天文系的 Tae Won Noh 教授和 Wei Peng 博士以及双吉大学(SSU)物理系的 Se Young Park 教授通力合作,取得了突破性进展,发现了一种诱导和控制金属极化和极性状态的方法。这项突破性研究最近发表在《自然-物理》杂志上。诱导两极分化的挑战顾名思义,金属中的"自由电子"的运动不会受到限制,因此很难将它们排列在特定的方向上以诱导极化或极性状态。此外,金属晶体两端对称的结构也给诱导这些电效应带来了挑战。不过,研究小组采用了柔电场来实现金属内部的极化和极性状态。当物体表面发生非均匀变形时,就会产生这种场,从而通过微妙地改变金属的晶格结构来操纵电荷运动和电气特性。(上图)通过柔电场实现极化金属态的示意图 (下图)极化金属 SrRuO3 的原子尺度成像图源 :POSTECH研究小组对电子元件和半导体领域广泛使用的钌酸锶(SrRuO3)施加外部压力,产生了柔电场。这种金属氧化物的特点是异外延,即不同形状的氧化锶和氧化钌晶体沿同一方向生长,具有中心对称结构。挠电场改变了钌酸锶内部的电子相互作用和晶格结构,成功诱导了金属内部的极化,导致其电气和机械性能发生变化,并打破了之前的中心对称结构。通过对铁磁性金属进行柔电极化和控制,研究小组成功揭开了金属物质内部极化和极性实现的神秘面纱。该研究的首席研究员、POSTECH 的 Daesu Lee 教授强调说:"我们是第一批验证金属物质中极性状态普遍存在的研究人员。我希望这项研究的结果将有助于在半导体和电气领域制造高效设备。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现猫咪也会玩接球游戏

科学家发现猫咪也会玩接球游戏 2023-12-21 20:52 by 电子脑叶 猫咪以独立而冷漠著称,你不会看到猫与人类之间的互动会和狗与人类相似,比如玩接球游戏。对不?不对。科学家发现,猫咪也会玩接球游戏。他们发现,会玩接球游戏的猫咪通常没有接受过任何明确的培训,而且猫更喜欢在游戏中充当主导。如果游戏是猫咪先发起而不是主人发起,那么猫咪会玩更长时间,会更乐意取回抛出的东西。换句话说,猫咪仍然是猫咪。研究人员表示,很多动物都有游戏行为,这在哺乳动物和鸟类中最常见。猫玩耍时的行为接近狩猎:快速接近和后退、跳跃、追逐、猛扑和潜近。猫通常是和同伴一起玩,然后逐渐独自玩。狗正好相反,它们先是独自玩然后一起玩。 https://arstechnica.com/?p=1990305 #科学

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人