科学家们已经弄清楚了为什么人们在饥饿时会生气

科学家们已经弄清楚了为什么人们在饥饿时会生气 美国研究人员发现,人体内某些细菌具有影响情绪的能力。他们假设是某种细菌使人在饥饿时生气,该论文发表在《自然微生物学》杂志上。 科学家表示,饥饿时心情不好的最可能原因是杆状细菌产气荚膜梭状芽孢杆菌,这种细菌不仅存在于人类身上,也存在于其他生物体中,也存在于土壤中。这些细菌的整个群落生活在人体内,分为不同的群体。 因此,假设一些细菌细胞在参与消化时处于平静状态,而另一些细菌细胞在饥饿时开始产生特定的毒素,影响人的一般状况和烦躁。 这一发现被认为有助于为动物和人类提供新的治疗方法,而无需诉诸抗生素。 .

相关推荐

封面图片

剑桥科学家发现免疫系统的"新规则" 调节性T细胞能穿越人体修复组织

剑桥科学家发现免疫系统的"新规则" 调节性T细胞能穿越人体修复组织 剑桥大学的研究人员发现,调节性 T 细胞能穿越人体修复组织,这为各种疾病的靶向治疗开辟了道路。调节性 T 细胞是白细胞的一种,它们组成一个庞大的群体,在全身不断循环,寻找并修复受损组织。这推翻了传统的观点,即调节性T细胞是作为局限于身体特定部位的多个专业群体而存在的。这一发现对许多不同疾病的治疗都有意义因为几乎所有疾病和损伤都会触发人体的免疫系统。目前的抗炎药物治疗的是整个身体,而不仅仅是需要治疗的部位。研究人员说,他们的发现意味着有可能关闭身体的免疫反应,修复身体任何特定部位的损伤,而不影响身体的其他部位。这意味着可以使用更高剂量、更有针对性的药物来治疗疾病,而且有可能迅速见效。该研究的资深作者阿德里安-利斯顿(Adrian Liston)教授和詹姆斯-杜利(James Dooley)博士利用显微镜追踪抗炎调节性T细胞在组织中的流动。图片来源:路易莎-伍德/巴伯拉罕研究所统一治疗力量"我们发现了免疫系统的新规则。这支'统一的治疗大军'无所不能修复受伤的肌肉,让脂肪细胞对胰岛素做出更好的反应,让毛囊重新生长……"论文的资深作者、剑桥大学病理学系阿德里安-利斯顿(Adrian Liston)教授说:"想到我们可以用它来治疗如此广泛的疾病,这真是太棒了:它有可能被用于治疗几乎所有的疾病。"为了得出这一发现,研究人员分析了小鼠体内48个不同组织中的调节性T细胞。结果发现,这些细胞并不是特化的或静止的,而是在体内移动到需要它们的地方。研究结果发表在今天的《免疫》(Immunity)杂志上。调节性 T 细胞可以通过血液从一个组织迁移到另一个组织。这些细胞在体内游走仅需几分钟,一旦进入组织,速度就会减慢,平均在组织内停留三周后才会离开。图片来源:Equinox Graphics利斯顿说:"很难想象有哪种疾病、损伤或感染不涉及某种免疫反应,而我们的发现确实改变了我们控制这种反应的方式。既然我们知道这些调节性T细胞存在于人体的各个部位,原则上我们就可以开始针对单一器官进行免疫抑制和组织再生治疗,这与目前的治疗方法相比是一个巨大的进步,因为目前的治疗方法就像用大锤敲打身体一样。"研究人员利用他们已经设计出的一种药物,在小鼠身上证明了可以将调节性 T 细胞吸引到身体的特定部位,增加它们的数量,并激活它们来关闭免疫反应,促进一个器官或组织的愈合。利斯顿说:"通过提高人体目标区域调节性 T 细胞的数量,我们可以帮助人体更好地进行自我修复或管理免疫反应。"该研究的第一作者奥利弗-伯顿(Oliver Burton)博士使用光谱细胞仪分析来自不同组织的抗炎调节性 T 细胞。图片来源:路易莎-伍德,巴布拉汉姆研究所他补充说:"在许多不同的疾病中,我们都希望关闭免疫反应,启动修复反应,例如多发性硬化症等自身免疫性疾病,甚至许多传染性疾病。"COVID-19 等感染的大多数症状并非来自病毒本身,而是来自人体免疫系统对病毒的攻击。一旦病毒过了高峰期,调节性T细胞就应该关闭人体的免疫反应,但在某些人体内,这一过程并不十分有效,可能导致持续的问题。这项新发现意味着有可能使用一种药物来关闭病人肺部的免疫反应,同时让身体其他部位的免疫系统继续正常运作。另一个例子是,接受器官移植的人必须终生服用免疫抑制药物,以防止器官排斥反应,因为身体会对移植器官产生严重的免疫反应。但这使他们极易受到感染。这项新发现有助于设计新的药物,只关闭人体对移植器官的免疫反应,但保持身体其他部分正常工作,使病人能够过上正常的生活。大多数白细胞通过触发免疫反应来攻击体内的感染。与此相反,调节性 T 细胞就像一支"统一的治疗大军",其目的是在免疫反应完成任务后关闭免疫反应,并修复免疫反应造成的组织损伤。研究人员目前正在筹集资金,准备成立一家独立公司,目的是在未来几年内开展临床试验,在人体上测试他们的研究成果。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家解密艾滋病毒的防御系统 创新疫苗策略大有可为

科学家解密艾滋病毒的防御系统 创新疫苗策略大有可为 HIV-1 病毒颗粒(粉红色/褐黄色)从慢性感染的 H9 细胞(茶色)的一个片段中萌发和复制的透射电子显微镜照片。颗粒处于不同的成熟阶段;弧形/半圆形是开始形成的不成熟颗粒,但仍是细胞的一部分。未成熟颗粒的形态会慢慢转变为成熟形态,并表现出典型的"圆锥形或球形核心"。图片拍摄于马里兰州德特里克堡的 NIAID 综合研究设施(IRF)。图片来源:NIAID艾滋病病毒的基因多种多样,因此难以用疫苗对其进行靶向治疗,但 bNAbs 可以克服这一障碍,因为它们能与病毒中即使发生变异也保持不变的部分结合。基因靶向是一种刺激免疫系统的方法,它能引导幼稚(前体)B细胞发育成能产生bNAbs的成熟B细胞。一类名为 10E8 的 bNAbs 是开发 HIV 疫苗的优先选择,因为它能中和特别广泛的 HIV 变种。10E8 bNAb 与艾滋病毒表面糖蛋白 gp41 的一个保守区域结合,该区域参与了艾滋病毒进入人类免疫细胞的过程。由于 gp41 的关键区域隐藏在 HIV 表面的凹陷缝隙中,因此设计一种免疫原一种用于疫苗中、能引起特定免疫系统反应的分子来刺激 10E8 bNAb 的产生一直是一项挑战。之前的疫苗免疫原没有产生具有物理结构的 bNAbs,无法到达 gp41 并与之结合。为了应对这一挑战,研究人员在纳米颗粒上设计了免疫原,模仿 gp41 的特定部分的外观。他们用这些免疫原为猕猴和小鼠接种疫苗,引起了10E8 B细胞前体的特异性反应,诱导出的抗体显示出成熟为bNAbs的迹象,可以到达隐藏的gp41区域。当他们在小鼠体内使用 mRNA 编码的纳米颗粒时,也观察到了类似的反应。研究人员还发现,同样的免疫原产生的B细胞能成熟产生另一种名为LN01的gp41定向bNAb。最后,他们在实验室对人类血液样本进行分析后发现,10E8类bNAb前体自然存在于没有感染艾滋病病毒的人体内,而且他们的免疫原能与具有10E8类特征的人类幼稚B细胞结合并将其分离出来。这些观察结果表明,小鼠和猕猴的免疫数据很有希望转化为人类的免疫数据。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家工程改造皮肤细菌 使其生产普通药物对抗痤疮

科学家工程改造皮肤细菌 使其生产普通药物对抗痤疮 痤疮的起因是毛囊被死皮细胞和油脂堵塞,继而发炎,形成我们再熟悉不过的粉刺、丘疹和白头。在打算不挤破它们的时候,我们可以用杀死油脂分泌细胞的药物或针对毛囊中细菌的抗生素来治疗。最近更多的实验性研究包括粉刺疫苗、益生菌或微针贴片,它们都能攻击致病的细菌。但如果我们能让这些细菌为我们工作呢?在这项新研究中,西班牙庞培法布拉大学(UPF)的科学家们研究了如何设计皮肤细菌来生产痤疮药物中的活性成分。他们的目标是痤疮丙酸杆菌,这是皮肤上最常见的细菌种类,也是生活在毛囊深处的细菌。过度分泌一种叫做皮脂的油脂是痤疮的常见诱因,许多痤疮药物如异维A酸都是通过杀死产生皮脂的细胞来发挥作用的。在这种情况下,痤疮丙酸杆菌被设计成能产生一种名为 NGAL 的蛋白质,这种蛋白质能介导自然产生的异维A酸。研究小组在实验室培养的人类皮肤细胞中测试了这种经过编辑的细菌,发现它能够产生和分泌 NGAL,减少皮脂分泌。在对小鼠的测试中,这种细菌也能存活并发挥作用,但由于小鼠的皮肤与我们的皮肤差别很大,因此无法通过这种方式测试其对痤疮的影响。这种技术不仅能帮助清除痤疮,还能减少对抗生素的依赖,因为抗生素正日益导致细菌产生抗药性。研究人员说,虽然还需要做更多的工作,包括首先在三维皮肤模型上进行尝试才能将这种技术用于人体试验,但它也可用于治疗其他皮肤病。首先是特应性皮炎。这项研究的首席研究员马克-居尔(Marc Güell)说:"我们开发了一个技术平台,为编辑任何细菌治疗多种疾病打开了大门。现在的重点是利用痤疮丙酸杆菌治疗痤疮,但我们也可以提供基因电路来创建智能微生物,用于与皮肤传感或免疫调节相关的应用。"这项研究发表在《自然-生物技术》杂志上。 ... PC版: 手机版:

封面图片

科学家在人类体内发现全新类型的"生物实体"

科学家在人类体内发现全新类型的"生物实体" 我们随身携带的微生物组非常庞大,并且仍在了解有关其构成及其如何影响我们健康的新知识。我们时常会在微生物组中发现新的细菌或病毒菌株,但科学家很少会发现一组全新的、不属于任何已知类别的实体。斯坦福大学的研究小组称它们为"方尖碑"(Obelisks),这要归功于它们的杆状结构。前者我们都很熟悉,而病毒则是更简单的 RNA 分子,可以通过分解和重组基因组进行复制,但不产生蛋白质,也没有保护壳。方尖碑具有类病毒的基本结构,但与病毒一样,它们简单的基因组似乎也能编码科学家称之为"方尖碑蛋白"的未知蛋白质。事实证明,方尖碑非常常见,而且种类繁多,令人惊讶。科学家们从世界各地 400 多人的微生物组样本中发现了近 3 万种不同类型的方尖碑。在大约 50% 的口腔微生物组测试样本和 7% 的肠道样本中都发现了它们。迄今为止,它们似乎还没有被发现,因为它们看起来并不像我们所知道的其他任何东西。研究人员在论文中写道:"我们发现,方尖碑形成了自己独特的系统发育群,与已知的生物制剂没有可检测到的序列或结构相似性。"它们在我们体内究竟做了什么,目前仍是一个谜。它们可能帮助宿主,也可能伤害宿主,宿主可能不是我们,而是以我们的身体为家的细菌或真菌。到目前为止,最主要的候选菌是存在于牙菌斑中的血链球菌。血链球菌生活在人类口腔中,是一组新描述的 RNA 实体的宿主。图片来源:英国卫生安全局/科学图片库研究人员说,这种易于培养的细菌物种将是进一步研究方尖碑的最佳起点。该研究尚未通过同行评审,但已作为预印本在bioRxiv 上发布。 ... PC版: 手机版:

封面图片

MRSA疫苗取得突破:科学家找到一种有望对抗致命超级病菌的方法

MRSA疫苗取得突破:科学家找到一种有望对抗致命超级病菌的方法 研究人员通过靶向免疫抑制分子 IL-10,提高了疫苗的效力,从而在抗击 MRSA 的斗争中取得了重大进展。他们的研究结果表明,中和IL-10可以增强免疫反应,帮助清除动物模型中的细菌。金黄色 葡萄球菌 是社区和医院获得性细菌感染的主要病因之一,每年全球有超过 100 万人死于这种细菌。不幸的是,抗生素对这种细菌的疗效越来越差,在高收入国家,抗生素耐药型 MRSA 导致的死亡人数最多。因此,科学家们非常关注如何找到解决方案,以扭转金黄色葡萄球菌相关感染的局面。其中一个极具吸引力的方案就是疫苗,尽管近年来在这方面取得了一些进展,但仍存在一些重大障碍。其中一个障碍似乎是金黄色葡萄球菌能够通过开启免疫系统中存在的一种天然断裂点来抑制免疫反应,这种天然断裂点是一种被称为白细胞介素-10(IL-10)的重要免疫抑制分子,其作用是减轻体内炎症。金黄色葡萄球菌(芥末色)缠绕在人类白细胞(红色)中的数字化彩色扫描电子显微镜图像。图片来源:美国国家卫生研究院关于金黄色葡萄球菌的有趣之处在于,除了是一种致命的病原体外,这种细菌还生活在我们体内或身上,但不会造成危害。然而,在这些无症状的相互作用过程中,这种细菌会影响免疫反应这意味着当注射金黄色葡萄球菌疫苗时,免疫系统很难做出适当的反应。在今天(7月8日)发表在权威期刊《JCI Insight》上的研究成果中,研究人员在动物模型中发现,如果用疫苗免疫受试者,使其免疫系统对感染做出反应,同时产生中和IL-10的抗体,免疫反应(通过特化T细胞)就会得到改善,细菌清除率也会在随后的感染中得到提高。金黄色葡萄球菌是一种常见的细菌,可在许多人的皮肤和鼻子中发现。虽然金黄色葡萄球菌通常无害,但如果它通过割伤或其他伤口进入人体,就会引起一系列轻微到严重的感染。感染包括疖子和脓疱疮等皮肤问题,以及肺炎、血液感染和心内膜炎等更严重的问题。金黄色葡萄球菌尤其令人担忧的一点是它对抗生素产生抗药性的能力,特别是 MRSA(耐甲氧西林金黄色葡萄球菌),它很难治疗,并以引起严重的医院感染而闻名。研究小组由都柏林圣三一学院生物化学与免疫学学院免疫学教授雷切尔-麦克劳林(Rachel McLoughlin)领导。都柏林圣三一学院生物化学与免疫学学院免疫学教授雷切尔说:"综合来看,我们的研究成果为一种新型战略提供了巨大的前景,这种战略可以提高以抑制金黄色葡萄球菌 感染为目的而开发的疫苗的功效。"我们的工作还有力地表明,以前接触过这种细菌可能会造成一种情况,即我们的免疫系统不再将其视为威胁,从而由于这种免疫抑制状态的产生而无法对疫苗做出适当的反应。这再次强调了为什么使用有助于中和IL-10的东西进行免疫接种为有效预防金黄色葡萄球菌带来了新的希望"。编译自/ScitechDaily ... PC版: 手机版:

封面图片

科学家正尝试将水熊虫蛋白植入人类细胞

科学家正尝试将水熊虫蛋白植入人类细胞 怀俄明大学的研究人员领导的一项新研究发现,在人体细胞中表达关键的水熊虫蛋白会减缓新陈代谢,这为了解这些难以被杀死的无脊椎动物如何在最极端的条件下生存提供了重要的启示。研究小组重点研究了一种名为CAHS D的特殊蛋白质,众所周知,这种蛋白质可以防止极端干燥(脱水)。通过各种方法,研究人员展示了 CAHS D 在受到压力时如何转变成凝胶状,从而保护分子并防止干燥。研究人员在发表的论文中写道:"这项研究深入揭示了水熊虫以及其他潜在的耐干燥生物是如何利用生物分子凝结在干燥环境中存活下来的。除了应激耐受性,我们的研究结果还提供了一条途径,可以围绕诱导细胞甚至整个生物体的生物稳态来开发技术,从而延缓衰老并增强储存和稳定性。"迟发型生物已经证明,它们可以在酷热和严寒的环境中生存,可以在对人类致命的高辐射环境中生存,也可以在长期缺水的环境中生存水通常是生命的必需品。它们甚至可以在太空中生存。先前的研究揭示了水熊虫历经数亿年积累起来的令人印象深刻的生存技巧。从根本上说,在 CAHS D 的帮助下,它们非常善于减缓生命进程,而这对人类细胞也可能有用。怀俄明大学的分子生物学家西尔维娅-桑切斯-马丁内斯说:"令人惊讶的是,当我们将这些蛋白质引入人体细胞时,它们会凝胶化,减缓新陈代谢,就像在水熊虫体内一样。当把含有这些蛋白质的人类细胞置于生物静止状态时,它们会变得更能抵抗压力,从而把水熊虫的一些能力赋予人类细胞。"在未来的某一天,我们也许能找到方法,将这种惊人的水熊虫复原力传递给我们自己的细胞和组织,从而有可能减缓生物衰老,并有助于在低温条件下安全储存细胞的治疗,例如器官移植。要利用这种能力的转移,还需要大量的进一步研究,目前已经在进行一些研究,探讨水熊虫蛋白能否稳定用于治疗遗传疾病的重要血液制品。早期迹象表明,在多个领域,包括当环境压力存在时,这种蛋白质会被智能地激活,而当环境压力不存在时,这种蛋白质又会失活。怀俄明大学分子生物学家托马斯-布斯比(Thomas Boothby)说:"当压力得到缓解时,水熊虫凝胶就会溶解,人体细胞就会恢复正常的新陈代谢。"这项研究发表在《蛋白质科学》上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人