哥飞给大家整理了几个可以在线体验 Llama2 的地方

哥飞给大家整理了几个可以在线体验 Llama2 的地方 目前最好用,可选70B、13B、7B模型 只有13B和7B 只有 7B 有 13B 和 7B 暂时找到了 13B 和 7B 的,70B的都报错,就没列出来 huggingface chat 支持 llama2 70B 和 llama 30B

相关推荐

封面图片

Gorq 的 iOS 应用已经推出,支持的模型有 Llama3 8B 、 70B 、 Llama2 70B 、 Mixtral

Gorq 的 iOS 应用已经推出,支持的模型有 Llama3 8B 、 70B 、 Llama2 70B 、 Mixtral 8X7B 、 Gemma 7B 。 输出速度非常快,目前不需要登录并且免费,通过下面的testflight链接安装。 安装:

封面图片

Llama2发布了,这版本可以商用了,国内的大模型有救了,我详细整理了一些信息:

Llama2发布了,这版本可以商用了,国内的大模型有救了,我详细整理了一些信息: - Llama2 的性能和参数 - 如何使用和限制条件 - Llama2 的模型架构 - Llama2 的训练方法论 下面是详细的信息 Llama2 的性能和参数 - Llama2有三个大小的版本分别是7B 13B和70B - Llama 2 的训练数据比 Llama 1 多 40%,上下文长度是 Llama 1 的两倍。 - 预训练的Token为2 万亿,上下文长度为4096 - 据Meta所说,Llama 2 在许多外部基准测试中都优于其他开源语言模型,包括推理、编码、熟练程度和知识测试。 如何使用和限制条件 - 与第一次泄漏的版本不同,这次Meta开放了商业使用的权限。 - 现在可以直接在这个页面申请下载模型: - 日活大于7亿的产品需要单独申请商用权限 - 不得使用 Llama 材料或 Llama 材料的任何输出或结果来改进任何其他大型语言模型。 Llama2 的模型架构 - Llama 2-Chat 的基础是 Llama 2 系列预训练语言模型。Llama 2 使用标准的Transformer架构。 - Llama 2-Chat 通过监督微调和强化学习人类反馈进行了优化。先进行监督微调,然后应用包括拒绝采样和PPO在内的强化学习算法进行迭代改进。 - 采用了一些优化,比如预规范化、SwiGLU激活函数和旋转位置嵌入(RoPE)。 - Llama 2-Chat有70亿、34亿、13亿和7亿参数的版本。训练使用公开可获得的数据,没有使用任何Meta用户数据。 Llama2 的训练方法论 1. 预训练 • 使用公开可获得的在线数据进行预训练,总计2万亿个标记。 • 对数据进行了清洗,移除了一些包含大量个人信息的网站。 • 采用标准的Transformer架构,以及一些优化如RoPE等。 2. 监督微调 • 使用高质量的人工标注数据(约3万示例)进行监督微调。 • 优化回答标记,而不是提示标记。 3. 基于人类反馈的强化学习 • 收集人类偏好数据: letting人类比较并选择更好的回复。 • 训练奖励模型,给回复打分。 • 使用拒绝抽样和PPO算法进行迭代调优。

封面图片

Meta宣布推出Llama 2(羊驼2) 提供7B~70B模型 开源免费可商用

Meta宣布推出Llama 2(羊驼2) 提供7B~70B模型 开源免费可商用 今天 Meta 发布 Llama 2 也就是羊驼 2 模型,提供 7B、13B 和 70B 参数版本,该模型开源、免费、可商用,这也是为什么最近一段时间有大量新模型出现,对开源社区来说,只要有高质量模型被开源出来,那接下来就是社区成员登场,微调、优化、定制、整合,然后就可以生成更多模型了。 羊驼 2 预训练模型接受了 2 万亿个 tokens 的训练,上下文长度是 Llama 1 的两倍,是的其上下文长度从 2048 提升到了 4096,其微调模型接受了超过 100 万个人类标注的训练。 根据 Meta AI 研究团队的测试,羊驼 2 在不少测试中表现都比较优异 (相对其他开源模型),包括推理、编程、熟练程度和知识测试。 (需要提供Email地址) 来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

掌握Llama 2:Meta推出提示工程交互式指南 || #指南

掌握Llama 2:Meta推出提示工程交互式指南 || #指南 一个交互式指南,涵盖了提示工程和最佳实践,专为与大型语言模型(LLM)工作的开发者、研究人员和爱好者设计。 指南提供了关于如何有效地与Llama 2模型交互的详细信息,包括如何格式化聊天提示、何时使用哪种Llama变体、何时使用ChatGPT而不是Llama、系统提示的工作方式以及一些技巧和窍门。还包括如何使用PEFT进行微调、如何在本地机器上进行微调以及如何部署Llama 2等资源。 Llama 2是Meta发布的一系列最新的开放访问大型语言模型,包括7B、13B和70B参数规模的模型,这些模型在预训练和微调方面都有显著改进。

封面图片

:允许用户在任何地方(Linux/Windows/Mac)通过 gradio web UI 在 GPU 或 CPU 上运行 Ll

:允许用户在任何地方(Linux/Windows/Mac)通过 gradio web UI 在 GPU 或 CPU 上运行 Llama 2。 它支持 Llama-2-7B/13B/70B,并且可以使用 8-bit 或 4-bit 模式。它支持至少有 6 GB VRAM 的 GPU 推理,以及至少有 6 GB RAM 的 CPU 推理。 支持多种模型:Llama-2-7b/13b/70b,所有的Llama-2-GPTQ,所有的Llama-2-GGML等 支持多种模型后端:Nvidia GPU(transformers,bitsandbytes(8-bit 推理),AutoGPTQ(4-bit 推理)),CPU,Mac/AMD GPU(llama.cpp) Web UI接口:gradio

封面图片

帮开发者构建生成式 AI 应用,Meta 和微软合作推出开源模型 Llama 2

帮开发者构建生成式 AI 应用,Meta 和微软合作推出开源模型 Llama 2 Meta 和微软近日合作推出 Llama 2,这是 Meta 公司的下一代开源大型语言模型,可以免费用于研究和商业用途。 微软在新闻稿中表示,Llama 2 旨在帮助开发者和组织,构建生成式人工智能工具和体验。 Azure 客户可以在 Azure 平台上更轻松、更安全地微调和部署 7B、13B 和 70B 参数的 Llama 2 模型,此外通过优化可以在 Windows 本地运行。 Llama 2 模型与 Azure AI 的结合使开发人员能够利用 Azure AI 的强大工具进行模型训练、微调、推理,特别是支持 AI 安全的功能。 微软表示在 Windows 中加入 Llama 2 模型,有助于推动 Windows 成为开发人员根据客户需求构建人工智能体验的最佳场所,并释放他们使用 Windows Subsystem for Linux (WSL)、Windows 终端、Microsoft Visual Studio 和 VS Code 等世界级工具进行构建的能力。 、 、

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人