一位泰国模特在被诊断出患有扁桃体炎后,她被注射了一剂头孢曲松(一种抗生素)来杀死感染。

一位泰国模特在被诊断出患有扁桃体炎后,她被注射了一剂头孢曲松(一种抗生素)来杀死感染。 但三天后,她的症状加重,出现胸闷、皮疹、口腔肿胀、视力模糊、无法行走等症状,再次回到医院。 她又接受了一剂相同的抗生素,并被诊断出患有水痘。 皮疹蔓延到她的全身,导致她的左眼失明。 #吃瓜 丨

相关推荐

封面图片

研究人员发现抗生素耐药性的新因素 挑战传统观点

研究人员发现抗生素耐药性的新因素 挑战传统观点 这一发现挑战了抗生素耐药性主要是由于过度使用抗生素的传统观点,凸显了"隐性饥饿"在这一全球健康问题中的作用。这项研究强调,需要采取全面的解决方案来解决营养不良问题及其对抗生素耐药性的影响。这项研究的重点是了解维生素 A、B12、叶酸、铁和锌等关键微量营养素含量不足对消化道内多种细菌、病毒、真菌和其他微生物的影响。他们发现,这些缺陷导致小鼠肠道微生物群发生重大变化,最明显的是已知为机会性病原体的细菌和真菌数量急剧增加。重要的是,微量营养素缺乏的小鼠还表现出与抗生素耐药性有关的基因富集度更高。"在有关全球抗生素耐药性的讨论中,微量营养素缺乏一直是一个被忽视的因素,"UBC医学遗传学系、儿科系和不列颠哥伦比亚省儿童医院研究所博士后研究员Paula Littlejohn博士说。"这是一个重大发现,因为它表明营养缺乏会使肠道环境更有利于抗生素耐药性的产生,而这正是全球健康的一个主要问题。"作为一种防御机制,细菌天然拥有这些基因。某些情况下,如抗生素压力或营养压力,会导致这些机制的增加。这就构成了一种威胁,可能会使许多强效抗生素失效,导致未来普通感染变得致命。抗生素耐药性通常被归咎于抗生素的过度使用和滥用,但利特尔约翰博士和她在加拿大卑诗大学的同事们的研究表明,微量营养素缺乏的"隐性饥饿"是另一个重要因素。利特尔约翰博士说:"全球约有3.4亿五岁以下儿童患有多种微量营养素缺乏症,这不仅会影响他们的生长,还会显著改变他们的肠道微生物群。我们的研究结果尤其令人担忧,因为这些儿童经常因营养不良相关疾病而服用抗生素。具有讽刺意味的是,由于潜在的微量营养素缺乏,他们的肠道微生物组可能会产生抗生素耐药性。"这项研究为了解生命早期微量营养素缺乏的深远影响提供了重要见解。研究强调,需要采取综合战略来解决营养不良问题及其对健康的连锁反应。解决微量营养素缺乏问题不仅仅是为了克服营养不良,它也可能是对抗全球抗生素耐药性祸害的关键一步。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

试着想象一下:未来的某一天,你去牙科诊所时惊恐地发现,由于病菌对各种常用的抗生素都有耐药性,拔牙竟然可能带来致命的危险!这就是人

试着想象一下:未来的某一天,你去牙科诊所时惊恐地发现,由于病菌对各种常用的抗生素都有耐药性,拔牙竟然可能带来致命的危险!这就是人类面临的重大危机之一:抗生素耐药性。 人们通常以为微生物对抗生素的耐药性主要源于医疗中的抗生素滥用,但这本书揭示了一个惊悚的事实:美国售出的80%的抗生素、全世界售出的50%的抗生素,都被禽畜而非人类服用! 抗生素问世后,除了在医疗中发挥奇迹般的作用以外,也迅速成为现代农业的助推剂。它能够促进动物生长,还能起到预防养殖禽畜患病的作用,于是农业中滥用抗生素的状况越演越烈,使微生物对各种重要的抗生素相继产生耐药性。 农业生产中的抗生素滥用酿成了严重的医疗危机,让急需抗生素解除痛苦甚至救命的病患无药可用。这场危机就潜藏在我们的餐桌上,尤其是在工业化养殖的鸡肉里。耐药菌的产生源头,正是那些集约化生产、将肉鸡关在拥挤不堪的笼子里并投喂大量抗生素的农场。鸡肉成为餐桌必需品,有什么样的历史原因?肉鸡的养殖和生产加工过程怎样逐步工业化、集约化,养殖者又为何将抗生素饲养作为常规操作?更重要的是,对于这场餐桌上的危机,我们能做些什么,怎样的努力才能真正起到作用? 这是一个重要且精彩的故事。 #科普 #生物学

封面图片

增强型棉绷带不使用抗生素也能杀死细菌

增强型棉绷带不使用抗生素也能杀死细菌 Tamer Uyar 副教授(左)和博士生 Mohsen Alishahi 检查棉基材料这种物质天然存在于指甲花叶中,以其抗氧化、消炎和抗菌特性而闻名。然而,由于其疏水(拒水)特性,它不容易与液体溶液混合并悬浮在其中。这就限制了它的生物利用度,使其不能被人体很好地吸收。环糊精是一种碳水化合物,具有中空的内腔和亲水性(吸水性)的外表面。通过"隐藏"在环糊精分子中,lawsome分子能够被彻底混合到液体溶液中。随后,将这种lawsome/环糊精溶液与无毒的羟丙基纤维素结合在一起。接下来,研究人员利用静电纺丝技术,在普通化妆棉上均匀地涂上一层这种混合物。涂层中的羟丙基纤维素现在变成了纳米级纤维素纤维,从而提高了溶液的表面体积比。在实验室与纯lawsone一起进行测试时,发现涂层棉花对革兰氏阴性和阳性细菌的抗生素作用更强。它对大肠杆菌和葡萄球菌的效果更好,能有效根除这两种细菌。Alishahi 说:"伤口敷料应为促进伤口愈合和预防感染提供适宜的环境。这种敷料使用棉花、环糊精和 Lawsone 等纯天然材料,具有全面的抗氧化和抗菌活性,可以促进伤口愈合和预防感染。"关于这项由棉花公司资助的研究的论文最近发表在《国际制药学杂志》上。 ... PC版: 手机版:

封面图片

科学家发现一种普通抗生素的意外健康隐患 病患90天死亡率增加5%

科学家发现一种普通抗生素的意外健康隐患 病患90天死亡率增加5% 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 从 2015 年开始,一种常用处方抗生素哌拉西林/他唑巴坦(品牌名 Zosyn)出现了长达 15 个月的全国性短缺,这为比较接受两种不同类型抗生素治疗的败血症住院患者的死亡率提供了一个独特的机会。哌拉西林/他唑巴坦是一种广谱抗生素,通常用于治疗败血症这种危及生命的感染并发症。如果没有哌拉西林/他唑巴坦,临床医生通常会使用另一种抗生素头孢吡肟,它对常见败血症病原体具有类似的活性,但与哌拉西林/他唑巴坦不同的是,头孢吡肟对肠道厌氧菌的作用很小。医学部肺部与重症医学科医学博士、魏尔重症研究与创新研究所副所长罗伯特-迪克森(Robert Dickson)说:"我们认为这次Zosyn的短缺是一个绝无仅有的机会,我们可以借此询问这种会消耗肠道厌氧菌的抗生素是否会对患者的治疗效果产生影响。"在健康状态下,肠道微生物群主要由厌氧菌组成,它们很少致病。该研究小组之前的研究表明,即使只服用一剂哌拉西林/他唑巴坦,也会杀死肠道中的大部分厌氧菌,而这些厌氧菌在人体新陈代谢、免疫和预防感染方面发挥着重要作用。研究结果和影响Dickson、传染病科的 Rishi Chanderraj 医学博士、肺部和重症医学科的 Michael Sjoding 医学博士以及他们在麻省大学和退伍军人安阿伯分部的多学科团队利用患者记录数据对 7569 名患者的治疗结果进行了研究。研究小组将4523名接受哌拉西林/他唑巴坦治疗的患者与3046名接受头孢吡肟治疗的患者进行了比较。他们发现了明显的差异:使用哌拉西林-他唑巴坦治疗时,90 天死亡率增加了 5%,使用呼吸机的天数增加,器官衰竭的时间延长。Chanderraj 说:"这些都是强效抗生素,全国每家医院每天都在给病人使用。临床医生使用这些抗生素是因为他们试图治疗可能导致病人患病的所有病原体。但我们的研究结果表明,它们对微生物组的影响可能也会对患者的预后产生重要影响。"研究小组之前的研究表明,如果给危重病人服用能消耗肠道厌氧菌的抗生素,病情可能会恶化,而这项研究正是在此基础上进行的。他们在研究动物模型时也发现了类似的效果。"我们之前的研究表明,哌拉西林/他唑巴坦可能存在危害,但这只是一项观察性研究,存在一些局限性,"该研究的资深作者 Sjoding 说。"这就是为什么药物短缺是一个绝佳的机会。它创造了一个近乎完美的自然实验,让我们能够以非常严谨的方式测试这两种药物对患者治疗效果的影响。"最近的一项临床试验将这两种抗生素进行了对比,并比较了两周后的副作用和死亡率。该试验没有发现短期内的任何差异马萨诸塞大学的研究小组在分析中也观察到了这一结果。Chanderraj 说:"在我们的研究中,当我们观察两周的结果时,我们也没有发现差异。但三个月后的差异却非常明显。"新的研究结果表明,使用哌拉西林/他唑巴坦而不是头孢吡肟进行治疗可能会导致每20名脓毒症患者中多一人死亡。"5%的死亡率差异影响巨大,因为败血症是如此常见,"Dickson 说。"每天,成千上万的临床医生都在决定对败血症患者使用哪种药物。"Chanderraj 补充说,医生在开具抗厌氧菌抗生素处方前,应更多地考虑是否有必要使用抗厌氧菌抗生素。"我们需要像看待化疗一样看待抗生素。在正确的情况下,治疗可以挽救生命,但在错误的情况下,治疗可能相当有害。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

寻找抗生素耐药性的起源:科学家发现18种前所未见的肠道微生物

寻找抗生素耐药性的起源:科学家发现18种前所未见的肠道微生物 预计到 2050 年,抗生素耐药感染将取代癌症成为导致死亡的主要原因,因此了解和限制抗生素耐药细菌的传播成为全世界的当务之急。在最近发表在《美国国家科学院院刊》(PNAS)上的一篇论文中,由马萨诸塞州眼耳科医院首席科学官迈克尔-吉尔摩(Michael S. Gilmore)博士共同领导的一个研究小组描述了他们发现的 18种从未见过的肠球菌类型细菌,这些细菌含有数百个新基因这些发现可能会为抗生素耐药性提供新的线索,因为科学家们正在寻找遏制这些感染的方法。肠球菌是导致耐多药感染的主要原因,尤其是在手术后和住院患者中。这种感染可导致死亡,每年增加的医疗成本超过 300 亿美元。抗生素的重要性"在过去的 75 年中,抗生素挽救了数亿人的生命,并为各类手术的成功做出了巨大贡献,"身兼哈佛医学院传染病研究所所长的吉尔摩说。"然而,在过去的 30 年里,许多最棘手的细菌对抗生素的耐药性越来越强,现在已经达到了危机的程度。我们的发现可能会加深人们对耐药基因如何传播到医院细菌并威胁人类健康的理解"。青霉素等抗生素是在 20 世纪 20 年代被发现的,它们是由土壤中的微生物自然产生的化合物。吉尔摩指出,产生抗生素的微生物在森林地面的腐烂树叶和植物物质中繁衍生息,并赋予森林土壤以气味。昆虫在抗生素耐药性中的作用吉尔摩和布罗德细菌基因组学组主任阿什莉-厄尔(Ashlee Earl)博士组建了一支国际科学家团队,其中包括精英冒险家,在全球偏远角落寻找可能含有肠球菌的粪便、土壤和其他样本。他们收集的标本种类繁多,包括在亚南极水域迁徙的企鹅、乌干达的杜鹃和大象;从巴西到美国的昆虫、双壳类动物、海龟和野生火鸡;蒙古的红隼和秃鹫;澳大利亚的沙袋鼠、天鹅和袋熊;以及欧洲的动物园动物和野生鸟类。研究小组之前的收集工作发现了新类别的细菌毒素,并表明肠球菌大约产生于 4.25 亿年前,当时第一批动物千足虫和蠕虫的祖先出现在陆地上。在四条腿的动物上岸之前,它们可能统治了地球大约 5000 万年。探险科学家史蒂维-安娜-普卢默(Stevie Anna Plummer)与 2016 年尼泊尔探险期间采集的粪便和水样,为全球微生物研究收集样本。图片来源:探险科学家(摄影:保罗-阿莫斯)研究人员最近的采集工作将肠球菌菌株的属种多样性扩大了 25% 以上,同时还发现了更多线索,揭示出昆虫和其他无脊椎动物可能是迄今为止肠球菌细菌(包括天然抗生素耐药菌种)的最大天然来源。厄尔说:"直到最近,我们对肠球菌遗传学的大部分了解都来自那些让我们生病的肠球菌,这是一个问题就像试图了解黑暗却从未见过光明一样。在公民科学家的帮助下,将我们的视野扩展到医院以外的地方,为我们提供了所需的对比,以确定它们是如何让医院里的人生病的,同时也为公众提供了共同拥有解决方案的机会"。吉尔摩认为,昆虫一直在吃腐烂的植物材料,在此过程中自然会给自己摄入一定剂量的抗生素。他假设,数亿年来,这些昆虫肠道中的细菌(如肠球菌)一直接触这些抗生素,并产生了抗药性。20 世纪 40 年代和 50 年代,当人类首次开始服用抗生素时,抗药性已经存在于环境中,并进入了导致人类感染的细菌中。COVID-19大流行揭示了自然界蕴藏着许多人类面临的传染风险。这项研究表明,自然界中的昆虫及其近亲是一个巨大的、未定性的微生物基因库,这些未被发现的微生物基因与那些导致一些抗生素耐药性最强的感染的微生物基因密切相关。编译自:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院的AI突破:对抗MRSA的新型抗生素先锋

麻省理工学院的AI突破:对抗MRSA的新型抗生素先锋 利用一种被称为深度学习的人工智能,麻省理工学院的研究人员发现了一类化合物,这种化合物可以杀死一种耐药细菌,这种细菌每年导致美国一万多人死亡。在最近发表于《自然》(Nature)的一项研究中,研究人员发现这些化合物可以杀死在实验室培养皿中生长的耐甲氧西林金黄色葡萄球菌(MRSA),以及在两种 MRSA 感染小鼠模型中生长的耐甲氧西林金黄色葡萄球菌。这些化合物对人体细胞的毒性也很低,因此特别适合作为候选药物。这项新研究的一个关键创新点是,研究人员还弄清了深度学习模型在预测抗生素效力时使用了哪些信息。这些知识可以帮助研究人员设计出更多的药物,它们可能比模型识别出的药物效果更好。"我们的洞察力在于,我们可以看到模型学习到了什么,从而预测出某些分子会成为很好的抗生素。"麻省理工学院医学工程与科学研究所(IMES)和生物工程系的特米尔医学工程与科学教授詹姆斯-柯林斯(James Collins)说:"我们的工作提供了一个框架,从化学结构的角度来看,它既省时、省资源,又具有机理上的洞察力。"这项研究是麻省理工学院"抗生素-人工智能项目"(Antibiotics-AI Project)的一部分,该项目由柯林斯领导。该项目是麻省理工学院抗生素-人工智能项目的一部分。该项目由柯林斯领导,其任务是在七年内发现针对七种致命细菌的新型抗生素。用人工智能应对 MRSA在美国,每年有超过 8 万人感染 MRSA,它通常会引起皮肤感染或肺炎。严重病例可导致败血症,这是一种可能致命的血液感染。在过去几年里,柯林斯和他在麻省理工学院阿卜杜勒-拉蒂夫-贾米尔健康机器学习诊所(Jameel Clinic)的同事们开始利用深度学习尝试寻找新的抗生素。他们的工作已经产生了针对鲍曼不动杆菌(一种常见于医院的细菌)和许多其他耐药细菌的潜在药物。这些化合物是利用深度学习模型确定的,该模型可以学习识别与抗菌活性相关的化学结构。然后,这些模型会筛选数百万种其他化合物,预测哪些化合物可能具有较强的抗菌活性。事实证明,这类搜索富有成效,但这种方法的一个局限是,模型是"黑盒子",也就是说,无法知道模型是根据什么特征进行预测的。如果科学家们知道模型是如何做出预测的,他们就能更容易地找出或设计出更多的抗生素。黄说:"我们在这项研究中要做的就是打开黑盒子。这些模型由大量模拟神经连接的计算组成,没有人真正知道这底下发生了什么"。提高人工智能的预测准确性首先,研究人员使用大幅扩展的数据集训练了一个深度学习模型。他们通过测试约 3.9 万种化合物对 MRSA 的抗生素活性生成了这些训练数据,然后将这些数据以及化合物的化学结构信息输入模型。Wong说:"基本上可以将任何分子表示为化学结构,还可以告诉模型该化学结构是否具有抗菌性。这个模型是在许多这样的例子中训练出来的。如果你给它任何新的分子、新的原子和化学键排列,它就能告诉你该化合物被预测为抗菌的概率。"为了弄清该模型是如何做出预测的,研究人员采用了一种被称为蒙特卡洛树搜索的算法,这种算法已被用来帮助使其他深度学习模型(如AlphaGo)更易于解释。这种搜索算法不仅能让模型对每种分子的抗菌活性做出估计,还能预测该分子的哪些亚结构可能会产生这种活性。人工智能驱动的药物发现过程为了进一步缩小候选药物的范围,研究人员又训练了三个深度学习模型,以预测化合物是否对三种不同类型的人体细胞有毒。通过将这些信息与抗菌活性预测相结合,研究人员发现了既能杀死微生物,又能对人体产生最小不良影响的化合物。利用这组模型,研究人员筛选了大约 1200 万种化合物,所有这些化合物都可以在市场上买到。根据分子中的化学子结构,模型从这些化合物中识别出了五种不同类别的化合物,这些化合物预计对 MRSA 具有活性。有希望的成果和未来方向研究人员购买了大约 280 种化合物,并对它们进行了针对在实验室培养皿中生长的 MRSA 的测试,从而确定了同一类中的两种似乎非常有希望成为候选抗生素的化合物。在两种小鼠模型(一种是 MRSA 皮肤感染模型,另一种是 MRSA 全身感染模型)的测试中,每种化合物都能将 MRSA 的数量减少 10 倍。实验发现,这些化合物似乎通过破坏细菌在细胞膜上维持电化学梯度的能力来杀死细菌。许多关键的细胞功能都需要这种梯度,包括产生 ATP(细胞用来储存能量的分子)的能力。柯林斯实验室在 2020 年发现的一种候选抗生素Halicin似乎也是通过类似的机制发挥作用的,但它对革兰氏阴性细菌(细胞壁较薄的细菌)具有特异性。MRSA 是一种革兰氏阳性细菌,细胞壁较厚。Wong说:"我们有相当有力的证据表明,这种新的结构类药物通过选择性地消散细菌中的质子动力,对革兰氏阳性病原体具有活性。这些分子选择性地攻击细菌细胞膜,而不会对人类细胞膜造成实质性损害。我们大幅增强的深度学习方法使我们能够预测这一类新结构的抗生素,并发现它对人类细胞没有毒性。"研究人员与Phare Bio 分享了他们的研究成果,Phare Bio 是柯林斯等人创办的非营利组织,也是抗生素人工智能项目的一部分。该非营利组织目前计划对这些化合物的化学特性和潜在临床用途进行更详细的分析。与此同时,柯林斯的实验室正在根据新研究的结果设计更多的候选药物,并利用这些模型寻找能杀死其他类型细菌的化合物。Wong说:"我们已经在利用基于化学子结构的类似方法来重新设计化合物,当然,我们也可以随时采用这种方法来发现针对不同病原体的新型抗生素。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人