#前沿科技新闻:原来我们都会发光?研究揭示活体生物发光现象

#前沿科技新闻:原来我们都会发光?研究揭示活体生物发光现象 一项发表在《物理化学快报》(The Journal of Physical Chemistry Letters)上的最新研究显示,活体生物可能持续发出极其微弱的可见光。科学家通过对小鼠和两种植物叶片的实验发现,一种“生物光子”的存在,使包括人类在内的所有生命体可能都自带“光环”,直至生命终结。 研究人员利用高灵敏度的电子倍增电荷耦合器件(EMCCD)和电荷耦合器件(CCD)相机,对比观察了活体和死亡小鼠的微弱光。结果表明,活体小鼠细胞能持续发出可见光波段的光子,而在安乐死后,这种光子数量显著下降。对植物叶片的实验显示当植物受到物理损伤或化学试剂刺激时,受损部位会发出更强的光,这提示活性氧可能是“生物光子”的来源。 未来或许可以依据这一现象,开发出基于“生物光子” 的无创监测技术,用于评估生物体,包括人类和农作物的健康状况。通过远程监测组织器官的压力水平,有望为医疗诊断和农业研究提供全新的视角和工具。 PS:你要相信自己,相信光 点击订阅华人新闻事件 免费投稿爆料: @yantou

相关推荐

封面图片

新研究揭示复杂的绿色生物出现于十亿年前

新研究揭示复杂的绿色生物出现于十亿年前 研究中调查的不同藻类的液体样本,全部储存在哥廷根大学的藻类培养收藏馆中。图片来源:Tatyana Darienko他们的研究使他们能够回到过去,研究早在陆地植物出现之前就已出现的藻系。他们的研究结果修正了人们对一组丝状藻类陆地殖民者关系的认识,这些丝状藻类比陆地植物还要古老得多。利用现代基因测序数据,研究人员将多细胞性的出现时间精确到了近十亿年前。研究结果发表在《当代生物学》(Current Biology)杂志上。这项研究的重点是藻类Klebsormidiophyceae,这是一类以能够在全球不同生境定居而闻名的绿藻。研究小组进行了广泛的取样,调查了从溪流、河流和湖岸到沼泽、土壤、天然岩石、树皮、酸性采矿后场地、沙丘、城市墙壁和建筑物外墙等各种栖息地。丝状藻类 Klebsormidium crenulatum 的显微镜图像,这是一种陆栖藻类,由于细胞壁很厚,因此具有很强的抗干燥能力。(比例尺为 10 微米,相当于 0.01 毫米)。图片来源:Tatyana Darienko哥廷根大学微生物学和遗传学研究所的塔季扬娜-达连科博士说:"这些微小健壮的小生物在形态上具有如此高的多样性,而且还能很好地适应有时非常恶劣的生活环境,这真是令人着迷。"这次全面采样的目的是绘制克雷伯虫藻的全球分布图,强调它们的适应性、生态意义和隐藏的多样性。根据化石校准的遗传数据,研究人员进行了"分子钟分析"。在深入研究Klebsormidium藻复杂的进化史时,研究人员面临着使用传统标记解析系统发育关系的挑战。为了克服这一难题,他们采用了从来自不同大陆和栖息地的 24 个分离物的转录组中获得的数百个基因。莱布尼兹生物多样性变化分析研究所的 Iker Irisarri 博士解释说:"我们的方法被称为系统发生组学,是通过考虑整个基因组或基因组的大部分来重建进化史。这种极其强大的方法可以非常精确地重建进化关系"。多细胞藻类 Streptosarcina arenaria 的显微镜图像,它是另一种陆生藻类,栖息于干旱和热带地区。(比例尺为 10 微米,相当于 0.01 毫米)。图片来源:Tatyana Darienko他们的研究揭示了一种新的生命系统发生组学树,该树分为三个纲。哥廷根大学应用生物信息学博士研究员 Maaike Bierenbroodspot 说:"对系统发生组框架和分子时钟的深入研究揭示了 Klebsormidiophyceae 的远古祖先一个在数百万年前茁壮成长的多细胞实体,其后代在 8 亿多年前开始分成三个不同的分支。"这些结果被用来探索链格藻多细胞性的进化历史。研究表明,陆生植物、其他链格藻和Klebsormidiophyceae藻的古老共同祖先已经是多细胞的。哥廷根大学微生物学和遗传学研究所的 Jan de Vries 教授总结道:"这一发现揭示了链格藻多细胞性的遗传潜力,表明这一关键特征起源于近十亿年前的远古时代。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家用合成生物学和三维打印技术打造可编程的生命材料

科学家用合成生物学和三维打印技术打造可编程的生命材料 从第 1 天(左)到第 14 天(右),3D 打印在水凝胶中的植物细胞生长并开始繁茂成黄色的细胞簇。图片来源:改编自 ACS Central Science 2024,DOI: 10.1021/acscentsci.4c00338最近,研究人员一直在开发工程活体材料,主要依靠细菌和真菌细胞作为活体成分。然而,植物细胞的独特特性激起了将其用于工程植物活体材料(EPLMs)的热情。以前,科学家们创造的基于植物细胞的材料结构相当简单,功能有限。余子怡、狄振高及其同事希望改变这种状况,他们制作了形状复杂的 EPLM,其中含有可定制行为和功能的基因工程植物细胞。24 天后,植物细胞在两种不同的生物墨水中产生的颜色在这种叶形工程活体材料中清晰可见。来源:改编自 ACS Central Science 2024,DOI: 10.1021/acscentsci.4c00338研究人员将烟草植物细胞与含有农杆菌的明胶和水凝胶微粒混合,农杆菌是一种常用于将DNA片段转入植物基因组的细菌。然后将这种生物墨水混合物在平板上或装有另一种凝胶的容器内进行 3D 打印,形成网格、雪花、树叶和螺旋等形状。接着,用蓝光固化打印材料中的水凝胶,使结构硬化。在随后的 48 小时内,EPLMs 中的细菌将 DNA 转移到生长中的烟草细胞上。然后他们用抗生素清洗这些材料,以杀死细菌。在接下来的几周里,随着植物细胞在 EPLMs 中生长和复制,它们开始根据转移的 DNA 生成蛋白质。在这项概念验证研究中,转移的DNA使烟草植物细胞能够产生绿色荧光蛋白或贝特类色素红色或黄色的植物色素,可作为天然着色剂和膳食补充剂。通过用两种不同的生物墨水打印叶形 EPLM一种墨水沿叶脉产生红色素,另一种墨水在叶片的其他部分产生黄色素研究人员表明,他们的技术可以产生复杂的、空间可控的多功能结构。研究人员说,这种 EPLM 结合了生物体的特征和非生物物质的稳定性和耐久性,可以用作细胞工厂,生产植物代谢物或药物蛋白质,甚至用于可持续建筑应用。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

对马达加斯加维管植物的研究揭示生物多样性保护差距 确定保护重点

对马达加斯加维管植物的研究揭示生物多样性保护差距 确定保护重点 马达加斯加维管植物的多样性热点、系统发育特有性中心和保护缺口。资料来源:IBCAS对马达加斯加维管植物的研究揭示了重要的保护重点,确定了当地特有植物和系统发育多样性较高的地区,并指出了该岛干旱和半干旱地区在保护方面存在的重大差距。中国科学院植物研究所(IBCAS)陈志端教授团队与国际合作者确定了生物多样性热点地区和特有性中心的空间异质性。根据这些信息,他们确定了马达加斯加维管植物的保护重点。马达加斯加是世界第四大岛,也是全球最重要的生物多样性热点地区之一。马达加斯加以其高度的特有多样性而闻名,这主要归功于其复杂的地质历史、地理位置以及与非洲、印度、东南亚和澳大利亚北部的生物地理联系。研究人员为马达加斯加岛绘制了一棵新的有年代的生命树,其中包括前所未有的马达加斯加维管植物 3,950 种(占所有已知物种的 33%)和 1,621 属(占所有已知属的 93%)样本。他们发现,马达加斯加现存的大多数特有属(69%)起源于新近纪-第四纪。综合系统发育和地理分布数据,研究人员发现生物分类群丰富度和系统发育多样性分布不均,热点集中在北部、东部和东南部湿润森林。他们还对特有中心进行了评估,这些中心既有分类学上的特有性,也有系统发育上的特有性。分析结果一致支持古特有性高度集中在潮湿的东部和中部地区,而新特有性则出现在马达加斯加西部和南部的干燥多刺森林中。最后,研究人员通过将生物多样性热点地区和特有物种中心与保护区重叠,确定了经常被忽视的干旱和半干旱地区的保护缺口。这些保护空白为马达加斯加在气候变化和人为压力增加的情况下保护生物多样性提供了更多证据。编译自:ScitechDaily ... PC版: 手机版:

封面图片

突破性研究揭示 COVID-19 脑雾的潜在治疗方法

突破性研究揭示 COVID-19 脑雾的潜在治疗方法 记忆力减退和学习困难是COVID-19 患者在康复过程中出现的许多令人困惑的症状之一。然而,人们对造成这些认知障碍(俗称脑雾)的机制知之甚少。在一项新的研究中,伊利诺伊大学芝加哥分校的研究人员发现了导致感染SARS-CoV-2(COVID-19 背后的病毒)的小鼠出现神经系统问题的机制。研究人员还找到了一种有助于预防这些变化的治疗方法。医学院解剖学和细胞生物学助理教授莎拉-卢茨(Sarah Lutz)领导了这项发表在《大脑》(Brain)杂志上的研究。研究小组重点研究了血脑屏障,它在多发性硬化症等其他神经系统疾病中也发挥着作用。正常情况下,血脑屏障保护大脑免受血液中潜在有害细胞或分子的侵害。但研究人员发现,受感染的小鼠血脑屏障血管渗漏,记忆力或学习能力受损。为了了解原因,研究人员观察了受感染小鼠大脑中的血管,看看哪些基因发生了最大的改变。他们发现,一种名为Wnt/β-catenin的信号通路明显减少,而这种信号通路有助于维持血脑屏障的健康,保护大脑免受损伤。根据这些结果,研究小组探讨了刺激 Wnt/beta-catenin 通路的基因疗法能否防止感染 SARS-CoV-2 的小鼠脑损伤。事实上,它就是这样做的。Lutz说:"他们的血脑屏障渗漏较少,免疫细胞对大脑的浸润也较少,从而改善了学习和记忆能力。"大脑中的血管内皮细胞(绿色)和基底膜(红色)。图片来源:Sarah Lutz由于年龄是感染 COVID-19 的人类出现认知障碍的一个风险因素,研究小组在研究中重点关注年龄较大的小鼠。他们特别追踪了小鼠的轻度感染情况。由于接种了疫苗,目前人类感染COVID-19的大多数病例都是轻度感染,而不是重度感染。然而,即使是轻度感染也会导致认知障碍,Lutz 说。虽然这项研究距离为人类确立一种预防感染后认知障碍的疗法还有很长的路要走,但这项研究是在这条道路上迈出的重要一步。任何时候,只要能确定一种导致疾病的分子机制,就能了解基础生物学和一般疾病的病因。这项研究表明,改善血脑屏障的完整性对预防COVID-19并发症有好处。本杰明-戈德堡(Benjamin Goldberg)教授、UIC 生物化学与分子遗传学系主任、该研究的合著者贾莱斯-雷曼(Jalees Rehman)博士解释说,从 COVID-19 大流行中得到的一个重要教训是,即使是轻微感染也会对包括大脑在内的器官产生深远影响。"有必要对可能影响大脑的呼吸道感染开展更多研究,"雷曼说。"好消息是,通过研究感染激活的分子信号以及随后免疫系统对感染做出反应时的炎症过程,我们可以开发出新的靶向疗法,防止大脑和其他器官受到进一步损害。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员开发出可再生骨骼的"骨绷带"

研究人员开发出可再生骨骼的"骨绷带" 压电材料在施加机械应力时会产生电荷。骨骼就是一种压电材料。由于骨具有电微环境,电信号在骨修复过程中发挥着重要作用,可有效促进骨再生。然而,骨再生是一个复杂的过程,依赖于机械、电气和生物成分。目前的骨再生策略,如释放生长因子的移植物或支架,都有其局限性,如供体部位的并发症、有限的可用性和高昂的成本。现在,韩国科学技术院(KAIST)的研究人员开发出了一种开创性的骨再生方法,它将压电和一种天然存在于骨骼中的矿物质结合在一起。羟基磷灰石(HAp)是骨骼和牙齿中的一种矿物质,在骨骼结构强度和再生中发挥作用。它通常被添加到牙膏中,用于重新矿化牙釉质和强化牙齿。研究发现,HAp 能促进成骨(骨形成),为新骨生长提供支架。它还具有压电特性和粗糙的表面,是制作骨生长支架的理想材料。因此,研究人员制作了一个独立的仿生物支架,将HAp集成到聚合物薄膜聚偏氟乙烯-三氟乙烯(P(VDF-TrFE))的压电框架中。这种独立的支架在施加压力时会产生电信号,这使得这种方法有别于以往将HAp和P(VDF-TrFE)结合在一起的研究,后者仅限于金属假体的涂层。他们说,研究人员的新方法为骨再生提供了一个多功能平台,超越了表面结合应用。对含有和不含HAp的支架进行体外比较后发现,HAp支架上的细胞附着率要高出10%至15%。细胞培养五天后,HAp 支架上的细胞增殖率提高了 20% 至 30%,成骨水平提高了约 30% 至 40%。研究结果表明,HAp 最大限度地提高了支架的压电特性,并创造了一种类似于人体细胞外基质的环境,细胞外基质是所有组织的非细胞成分,它提供了组织再生所需的基本物理结构和重要线索。(d)显微 CT 图像显示使用不同支架的小鼠头骨的骨再生情况;(e)支架植入后 2、4 和 6 周的骨量和面积 Joo 等人研究人员随后在小鼠身上测试了他们的 HAp/P(VDF-TrFE)支架,将其置于动物头骨(小腿骨)的缺损处。支架维持了六周,没有发生变形。所有小鼠都存活了下来;没有观察到任何不良反应,包括感染或炎症反应。植入两周、四周和六周后,与对照组没有骨形成相比,安装了HAp支架的小鼠的骨再生能力明显增强。该研究的通讯作者之一 Seungbum Hong 说:"我们开发出了一种基于 HAp 的压电复合材料,它可以像'骨绷带'一样加速骨再生。这项研究不仅为生物材料的设计提出了新的方向,而且在探索压电性和表面特性对骨再生的影响方面也具有重要意义。"这项研究发表在《ACS 应用材料与界面》杂志上。 ... PC版: 手机版:

封面图片

美国佛蒙特大学、塔夫茨和哈佛等机构研究人员此前通过超级计算机设计且利用青蛙胚胎干细胞,制作出一种微型生物体,它能进行新式

美国佛蒙特大学、塔夫茨大学和哈佛大学等机构研究人员此前通过超级计算机设计且利用青蛙胚胎干细胞,制作出一种微型生物体,它能进行新式自我复制,并将其称为“活体机器人”。 这项在线发表在美国《国家科学院学报》上的研究结果显示,科研人员将大量这种“活体机器人”与游离胚胎干细胞一起置于培养皿中,发现造型类似“吃豆人”的“活体机器人”能在培养皿中移动,自发寻找游离的胚胎干细胞,并将数百个干细胞汇聚起来,在“吃豆人”嘴部近旁组成“婴儿机器人”。几天后,“婴儿机器人”会变成在外形及移动方式上与“母体”完全一样的“活体机器人”,这些新生代能自行游移,寻找游离胚胎干细胞并继续自我复制。 论文主要作者、在塔夫茨大学和哈佛大学担任联合博士后研究员的萨姆·克里格曼说,“这些青蛙细胞是以与青蛙(繁殖)完全不同的方式自我复制。在已知科学领域,没有哪种动物或植物以这种方式自我复制”。 据研究人员介绍,为提高“母体”繁殖效率,研究团队利用人工智能程序为“活体机器人”模拟测试了大量不同体型,其中包括许多奇怪设计,例如“吃豆人”造型等。实验结果显示,“吃豆人”造型的“活体机器人”可以完成多代繁殖。 这项研究同时引发了人们关于科研伦理的讨论。论文通讯作者、佛蒙特大学计算机研究人员乔舒亚·邦加德回应说,这些毫米尺寸的“活体机器人”仅存在于实验室,很容易被销毁,并且该研究已经过美国联邦、州以及学术机构的伦理专家审查。研究人员表示,该研究在再生医疗领域有广泛应用前景,或有助于提供新解决方案以处理外伤、出生缺陷、癌症和衰老等问题。 (新华社,国家科学院学报)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人