#微软 技 #科研 #量子

#微软 #科技 #科研 #量子 微软打开量子大门 推出 Majorana 1 量子处理器 微软表示,这款芯片的核心技术在于 Topconductor,一种能创造出既非固体、液体亦非气体的新物质状态。 拓扑导体能够控制 Majorana 粒子,这些粒子是理论上存在的特殊量子粒子,微软透过磁场及超导材料成功诱导其存在,并进一步利用它们的特性构建更稳定的拓扑量子位(Topological Qubits)。 这些量子位相较于现有技术,更能抵御噪声及干扰,从而减少数据丢失的风险。

相关推荐

封面图片

微软预计10年内打造量子超级计算机

微软预计10年内打造量子超级计算机 微软今天宣布了其建立自己的量子超级计算机的路线图,使用该公司的研究人员已经研究了相当多年的拓扑量子比特。还有很多中间的里程碑要达到,但微软高级量子开发副总裁Krysta Svore告诉我们,该公司相信,使用这些量子比特建造一台量子超级计算机将需要不到10年的时间,该计算机将能够每秒执行一百万次可靠的量子操作。这是微软推出的一个新的衡量标准,因为整个行业旨在超越目前的嘈杂的中尺度量子(NISQ)计算时代。 来源:

封面图片

微软希望你在 Azure 中构建量子应用

微软希望你在 Azure 中构建量子应用 微软认为,需要一台相当强大的 P 级超级计算机,能够以 10-100 Tbit/s 的速度与量子元素连接,才能实现容错的量子计算机,而只有云才能提供实现这一目标所需的规模。本周,微软向公众提供了平台,以实现这一目标。与一些在仿真环境中提供量子计算,以帮助开发者探索使用量子算法的项目不同,微软似乎是在真正的量子硬件上做这件事,微软与一系列使用各种技术的量子计算供应商建立了合作。但该产品并不是针对生产工作负载的,主要是针对那些有相当高的预算的研究人员和科学家运行探索性应用。来源 ,, 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

微软实现量子计算最新突破:14000次实验无错误

微软实现量子计算最新突破:14000次实验无错误 量子计算的核心优势在于量子比特(qubit),它能够同时处于0和1的状态,实现指数级的并行计算能力。然而,量子系统的高敏感性使得量子比特状态容易受到环境扰动的影响,导致计算误差。因此提升量子比特的稳定性和降低误差率,是实现可靠量子计算的关键。此次微软和Quantinuum的合作,通过结合微软的量子比特虚拟化系统和Quantinuum的离子阱硬件技术,实现了创纪录的低错误率逻辑量子比特操作。这一成果标志着量子计算从嘈杂中间规模量子(NISQ)时代向更具稳定性和可扩展性的2级弹性量子运算时代的迈进。特别引人注目的是,双方在实验中成功完成了多达14000次的量子计算操作而未出现任何错误,这一成就是物理错误率与逻辑错误率间差距的显著展现。此外,微软和Quantinuum的合作还包括在Azure Quantum平台上的共同研发,该平台将全球领先的NISQ硬件引入云端,使量子技术更加易于获取。 ... PC版: 手机版:

封面图片

创新性研究利用悬浮光学机械观察较大物体的量子现象

创新性研究利用悬浮光学机械观察较大物体的量子现象 两个被光学捕获的纳米粒子通过光子在镜子之间来回反弹而耦合在一起,图片显示两个纳米粒子(绿色)被光镊/激光束(红色)困住,并被放置在两面镜子(白色)之间,形成一个光腔(周期性的蓝色圆球)。纳米粒子(紫色斜箭头)散射的光子被困在空腔中,从而导致两个纳米粒子之间的相互作用(紫色直线)。资料来源:曼彻斯特大学量子物理定律支配着微小尺度上的粒子行为,从而产生了量子纠缠等现象,纠缠粒子的特性以经典物理学无法解释的方式密不可分地联系在一起。较大物体中的量子现象量子物理学研究有助于我们填补物理学知识的空白,并能让我们更全面地了解现实,但量子系统运行的微小尺度会使它们难以观测和研究。在过去的一个世纪里,物理学家成功地在越来越大的物体中观测到了量子现象,从电子等亚原子粒子到包含成千上万原子的分子。最近,悬浮光机械学领域涉及在真空中控制高质微米级物体,其目的是通过测试比原子和分子重几个数量级的物体中量子现象的有效性,进一步推动这一领域的发展。然而,随着物体质量和尺寸的增加,产生微妙量子特征(如纠缠)的相互作用会被环境所遗忘,从而导致我们观察到的经典行为。克服环境噪声但现在,曼彻斯特大学量子工程实验室主任 Jayadev Vijayan 博士与苏黎世联邦理工学院的科学家以及因斯布鲁克大学的理论家共同领导的团队,在苏黎世联邦理工学院进行的一项实验中确立了克服这一问题的新方法,并发表在《自然-物理》杂志上。Vijayan博士说:"要在更大尺度上观测量子现象并揭示经典-量子转换,就必须在环境噪声的影响下保留量子特征。可以想象,要做到这一点有两种方法:一是抑制噪声,二是增强量子特征。我们的研究展示了通过第二种方法应对挑战的方法。我们的研究表明,两个光学捕获的 0.1 微米大小的玻璃颗粒之间的纠缠所需的相互作用可以放大几个数量级,以克服环境损失。"科学家们将粒子放在两面高反射镜之间,形成一个光腔。这样,每个粒子散射的光子在离开空腔之前会在镜子之间反弹数千次,从而大大提高了与另一个粒子发生相互作用的几率。苏黎世联邦理工学院的论文共同负责人约翰内斯-皮奥特罗斯基(Johannes Piotrowski)补充说:"值得注意的是,由于光学相互作用是由空腔介导的,其强度不会随距离衰减,这意味着我们可以将微米级粒子耦合到几毫米的范围内。研究人员还展示了通过改变激光频率和粒子在腔体内的位置来精细调整或控制相互作用强度的非凡能力。实际应用和未来方向这些发现是对基础物理学理解的重大飞跃,同时也为实际应用带来了希望,特别是可用于环境监测和离线导航的传感器技术。维也纳技术大学的合作者卡洛斯-冈萨雷斯-巴列斯特罗博士说:"悬浮机械传感器的关键优势在于,与其他使用传感技术的量子系统相比,它们的质量很高。大质量使其非常适合探测引力和加速度,从而提高灵敏度。因此,量子传感器可用于各个领域的许多不同应用,如监测极地冰层用于气候研究,测量加速度用于导航目的等。"皮奥特罗斯基补充说:"能在这个相对较新的平台上工作,并测试我们能在多大程度上将其推入量子体系,这令人兴奋。"现在,研究团队将把新功能与成熟的量子冷却技术相结合,大步迈向量子纠缠的验证。如果成功,实现悬浮纳米粒子和微粒子的纠缠将缩小量子世界与日常经典力学之间的差距。在曼彻斯特大学光子科学研究所和电气与电子工程系,Jayadev Vijayan 博士的团队将继续研究悬浮光学机械学,利用多个纳米粒子之间的相互作用,将其应用于量子传感领域。编译自:ScitechDaily ... PC版: 手机版:

封面图片

国内首款可量产量子计算机用稀释制冷机问世

国内首款可量产量子计算机用稀释制冷机问世 今天,安徽省量子信息工程技术研究中心及科大国盾量子技术股份有限公司联合发布消息,国产稀释制冷机ez-Q Fridge在交付客户后完成性能测试。测试结果显示,该设备实际运行指标达同类产品国际主流水平,成为国内首款可商用可量产的超导量子计算机用稀释制冷机。据介绍,2023年下半年,科大国盾量子向2家科研单位交付了国产稀释制冷机产品。经客户多月测试,设备长时间连续稳定运行,能够结合主动减震系统以及磁屏蔽等,为量子芯片提供低至10mK级别的极低温低噪声环境,制冷功率达到450uW@100mK。在容纳78根低温测控同轴线缆的超导量子计算低温支撑系统中,分别对56比特和24比特超导量子芯片进行测试,稀释制冷机运转效果良好,达到了国际先进水平。 ... PC版: 手机版:

封面图片

中国科大首次实现光子的分数量子反常霍尔态

中国科大首次实现光子的分数量子反常霍尔态 成果示意图。16个非线性“光子盒”阵列囚禁的微波光子强相互作用形成分数量子反常霍尔态。霍尔效应是指当电流通过置于磁场中的材料时,电子受到洛伦兹力的作用,在材料内部产生垂直于电流和磁场方向的电压。反常霍尔效应是指无需外部磁场的情况下观测到相关效应。分数量子霍尔态展现出非平庸的多体纠缠,对其研究所衍生出的拓扑序、复合费米子等理论成果逐渐成为多体物理学的基本模型。与此同时,分数量子霍尔态可激发出局域的准粒子,这种准粒子具有奇异的分数统计和拓扑保护性质,有望成为拓扑量子计算的载体。传统的量子霍尔效应实验研究采用“自顶而下”的方式,即在特定材料的基础上,利用该材料已有的结构和性质实现制备量子霍尔态。通常情况下,需要极低温环境、极高的二维材料纯净度和极强的磁场,对实验要求较为苛刻。此外,传统“自顶而下”的方法难以对系统微观量子态进行单点位独立地操控和测量,一定程度上限制了其在量子信息科学中的应用。人工搭建的量子系统结构清晰,灵活可控,是一种“自底而上”研究复杂量子物态的新范式。其无需外磁场,通过变换耦合形式即可构造出等效人工规范场;通过对系统进行高精度可寻址的操控,可实现对高集成度量子系统微观性质的全面测量,并加以进一步可控的利用。这类技术被称为量子模拟,是“第二次量子革命”的重要内容,有望在近期应用于模拟经典计算困难的量子系统并达到“量子计算优越性”。据介绍,此前,国际上已经基于其开展了一些合成拓扑物态、研究拓扑性质的量子模拟工作。然而,由于以往系统中耦合形式和非线性强度的限制,人们一直未能在二维晶格中为光子构建人工规范场。为解决这一重大挑战,研究团队在国际上自主研发并命名了一种新型超导量子比特Plasmonium,打破了目前主流的Transmon(传输子型)量子比特相干性与非简谐性之间的制约,用更高的非简谐性提供了光子间更强的排斥作用。进一步,团队通过交流耦合的方式构造出作用于光子的等效磁场,使光子绕晶格的流动可积累Berry(贝里)相位,解决了实现光子分数量子反常霍尔效应的两个关键难题。同时,这样的人造系统具有可寻址、单点位独立控制和读取,以及可编程性强的优势,为实验观测和操纵提供了新的手段。在该项工作中,研究人员观测到了分数量子霍尔态独有的拓扑关联性质,验证了该系统的分数霍尔电导。同时,他们通过引入局域势场的方法,跟踪了准粒子的产生过程,证实了准粒子的不可压缩性质。《科学》杂志审稿人高度评价这一工作,认为这一工作“是利用相互作用光子进行量子模拟的重大进展”“一种新颖的局域单点控制和自底而上的途径”。诺贝尔物理学奖得主Frank Wilczek评价,这种“自底而上”、用人造原子构建哈密顿量的途径是一个“非常有前途的想法”,这是一个令人印象深刻的实验,为基于任意子的量子信息处理迈出了重要一步。沃尔夫奖获得者Peter Zoller评价,“这在科学和技术上都是一项杰出的成就” “实现这样的目标是多年来全球顶级实验室竞争的量子模拟的圣杯之一”。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人