上海微系统所在大尺寸石墨烯制备及导热应用方面获进展

上海微系统所在大尺寸石墨烯制备及导热应用方面获进展石墨烯材料的可控制备是石墨烯行业的基础,更是石墨烯在下游应用中充分发挥性能优势的关键。在批量制造石墨烯材料的过程中,精确控制石墨烯片层厚度、横向尺寸和化学结构等参数已成为石墨烯在热管理、新能源、纤维等领域应用的瓶颈。鳞片石墨剥离技术是发展最为成熟的石墨烯规模化制备技术之一,该方法已实现石墨烯片层厚度和化学结构的精确控制,但在横向尺寸调控方面仍面临挑战,典型的石墨烯横向尺寸分布在几百纳米到几个微米以内。单一石墨烯片的的横向尺寸越大,所组装构建的宏观结构在导热、导电和力学等性能方面具有更大的提升潜力和空间。因此,亟待发展横向尺寸在几十微米、甚至几百微米的大尺寸石墨烯材料规模化高效可控制备技术,而实现这一目标必须从制备机理上创新和突破。近日,针对传统技术利用长时间、强氧化剂环境氧化剥离石墨存在剪切破碎严重、横向尺寸难保持等关键科学问题,中国科学院上海微系统与信息技术研究所丁古巧课题组在前期独创的“离域电化学解理”方法(ChemicalEngineeringJournal)和“预解理再剥离”技术(Carbon)的基础上,提出了“氧化新鲜石墨烯网络结构”新策略。该策略首先利用离域电化学法深度解理石墨获得多孔的石墨烯网络结构,然后对获得的石墨烯多孔网络结构进行氧化剥离,因多孔网络结构为氧化剂的输运提供了高速通道,实现了氧化剂当量和氧化剥离时间的同步大幅减小(图1a),氧化剂当量从通常报道的2-5减少至1,氧化时间从通常的3-5h下降到1h,为大尺寸石墨烯材料的制备提供了新思路。图1.(a)“氧化石墨烯网络结构”策略示意图;(b)大尺寸氧化石墨烯横向尺寸及分布;(c)大尺寸氧化石墨烯的晶格结构分析;(d、e)“氧化新鲜石墨烯网络”策略的优势。该方法在不引入后续筛选处理的情况下实现了大尺寸高晶格质量氧化石墨烯的高效制备。将石墨剥离过程中横向尺寸保持率提高到目前文献报道最好水平的1.5-2倍,将氧化石墨烯的平均尺寸极限从~120μm提升到~180μm(图1b)。结构表征数据表明,所制备的水相可分散大尺寸氧化石墨烯具有完全不同于传统氧化石墨烯的晶格结构,也不同于一般的石墨烯,是介于氧化石墨烯和高质量石墨烯之间的一种特殊结构石墨烯材料。氧化剂当量和氧化时间同时减少抑制了石墨/石墨烯碎裂,并在很大程度上保留了石墨原料的sp2结构,在剥离形成的石墨烯片中形成了“晶区网络包围非晶区岛”的特殊晶格结构(图1c)。机理研究发现,深度预解理石墨结构并保持其“新鲜性”对于石墨烯横向尺寸保持至关重要,传统方法在预解理和氧化剥离体系之间切换时引入的洗涤干燥等过程不可忽视。现有预解理方法较难将石墨解理成石墨烯网络结构,且溶液体系切换不可避免的片层“回叠”效应在很大程度上破坏了新构建的氧化剂输运通道。相反,“离域电化学解理”体系较好地匹配了氧化剥离体系,从根本上避免了不同体系...PC版:https://www.cnbeta.com/articles/soft/1303311.htm手机版:https://m.cnbeta.com/view/1303311.htm

相关推荐

封面图片

氧化石墨烯可用于加固3D打印混凝土并使其电气化

氧化石墨烯可用于加固3D打印混凝土并使其电气化用增强混凝土制作的3D打印测试结构之一通常,混凝土建筑、桥梁和其他结构都是通过将湿混凝土浇注到木模(又称模板)中制成的,一旦混凝土硬化,木模就会被拆除。相比之下,3D打印技术则是将挤出的混凝土层层叠加,并在硬化过程中粘合在一起。不幸的是,这些层之间的粘结有时会成为薄弱点,从而降低结构的整体强度。为了解决这个问题,澳大利亚皇家墨尔本理工大学(RMITUniversity)和墨尔本大学(UniversityofMelbourne)的科学家们尝试将氧化石墨烯添加到用作3D打印混凝土粘结剂的水泥中。氧化石墨烯是石墨烯的氧化形式,而石墨烯又是由一个原子厚的碳原子片以蜂窝状连接在一起。在试验了不同的用量后发现,当氧化石墨烯的用量为水泥重量的0.015%时,混凝土的层间粘合效果更好。整体强度提高了10%。皇家墨尔本理工大学副教授乔纳森-陈(JonathanTran)说:"氧化石墨烯表面具有官能团,这些官能团就像材料表面的粘点,可以抓住其他东西。这些'粘点'主要由含氧的各种官能团组成,它们在促进氧化烯与水泥等其他材料的牢固结合方面发挥着至关重要的作用。这种强大的粘合力可以提高混凝土的整体强度。"较高剂量的氧化石墨烯实际上降低了混凝土的强度和用途还有一个额外的好处,由于石墨烯具有很强的导电性,因此可以通过硬化的混凝土传递电流。希望有一天这种功能能用于裂缝检测系统,即使是最小的裂缝也能中断贯穿混凝土结构的电路。在这方面还需要进行更多的研究,而且科学家们还没有确定增强3D打印混凝土的强度与传统浇注混凝土的强度相比如何。由皇家墨尔本理工大学博士生刘俊利领导的这项研究的论文最近发表在《增材制造通讯》(AdditiveManufacturingLetters)杂志上。在以前的研究中,氧化石墨烯曾被用于在混凝土上形成保护层,以及增加用于加固混凝土的碎面罩纤维的粘合强度。...PC版:https://www.cnbeta.com.tw/articles/soft/1402273.htm手机版:https://m.cnbeta.com.tw/view/1402273.htm

封面图片

研究发现纳米材料氧化石墨烯可通过肠道微生物组影响免疫系统

研究发现纳米材料氧化石墨烯可通过肠道微生物组影响免疫系统"该论文的通讯作者、瑞典卡罗林斯卡学院环境医学研究所教授BengtFadeel说:"这表明我们必须将肠道微生物组纳入我们对纳米材料如何影响免疫系统的理解。研究结果对于确定纳米材料的潜在不利影响以及在新材料中减轻或防止这种影响非常重要。"石墨烯是一种极薄的材料,比人的头发还要薄一百万倍。它由单层碳原子组成,比钢铁更坚固,但又有弹性、透明和导电性。这使得它在众多的应用中极为有用,包括在配备有可穿戴电子设备的"智能"纺织品中,以及作为复合材料的组成部分,以增强现有材料的强度和导电性。随着石墨烯基纳米材料使用的增加,需要研究这些新材料如何影响身体。人们已经知道纳米材料会对免疫系统产生影响,近年来的一些研究表明,它们也会影响肠道微生物组,即胃肠道中自然存在的细菌。纳米材料、肠道微生物组和免疫力之间的关系是本研究使用斑马鱼进行的主题。被调查的纳米材料是氧化石墨烯,它可以被描述为石墨烯的一个相对物,由碳原子和氧原子组成。与石墨烯不同,氧化石墨烯可溶于水,是医学研究的兴趣所在,例如,作为在体内输送药物的一种手段。在这项研究中,研究人员让成年斑马鱼通过水接触氧化石墨烯,并分析了它如何影响微生物组的组成。他们既使用了正常的鱼,也使用了在其肠道细胞中缺乏一种叫做芳烃受体(通常缩写为AhR)的受体分子的鱼,这是一种对各种内源性和细菌性代谢物的受体。"我们能够表明,当我们将鱼暴露在氧化石墨烯中时,肠道微生物组的组成发生了变化,即使是低剂量,AhR也会影响肠道微生物组,"该研究的第一作者、卡罗林斯卡学院环境医学研究所的博士后研究员彭国涛说。研究人员还生成了完全缺乏天然肠道微生物组的斑马鱼幼体,这使得研究个别微生物组成分的影响成为可能,在这种情况下,丁酸(一种脂肪酸),它由某些类型的肠道细菌分泌。众所周知,丁酸能够与AhR结合。这样做,研究人员发现,氧化石墨烯和丁酸的组合在鱼体内产生了所谓的2型免疫力。结果发现,这种效果取决于肠道细胞中AhR的表达。"这种类型的免疫力通常被视为对寄生虫感染的一种反应。"彭国涛说:"我们的解释是,肠道免疫反应可以以类似于处理寄生虫的方式处理氧化石墨烯。"使用一种先进的免疫细胞绘图方法,研究人员还能够表明,在斑马鱼幼虫中发现了一种叫做先天淋巴细胞的免疫系统组成部分。这表明斑马鱼是研究免疫系统的一个良好模型,包括原始或先天免疫系统。...PC版:https://www.cnbeta.com.tw/articles/soft/1336795.htm手机版:https://m.cnbeta.com.tw/view/1336795.htm

封面图片

天然双层石墨烯内发现新奇量子效应

天然双层石墨烯内发现新奇量子效应由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。2004年,两位英国科学家用一种非常简单的实验方法从石墨中剥离出石墨片,并借助特殊胶带得到仅由一层碳原子构成的石墨烯。石墨烯是强度最高的材料之一,具有很好的韧性、超强导热性与导电性,应用前景十分广阔。如果将两层石墨烯彼此以特定的角度偏转,所得到的系统甚至会表现出超导性和其他激发量子效应,如磁性。但迄今为止,很难制备出这种偏转的双层石墨烯。在最新研究中,科学家们使用了天然形成的双层石墨烯。他们首先使用简单的胶带从一块石墨中分离出石墨烯样品。为观察量子力学效应,施加了垂直于样品的高电场。他们发现,所得到系统的电子结构发生了变化,且拥有类似能量的电荷载流子出现强烈的累积效应。研究进一步发现,在略高于绝对零度(-273.15℃)下,石墨烯中的电子可相互作用,出现了各种意想不到且复杂的量子相。如相互作用导致电子自旋对齐,使材料在没有施加外部影响的情况下具有磁性。通过改变电场,研究人员也能不断改变双层石墨烯中载流子相互作用的强度。此外,电子运动的自由度在特定条件下会受限,形成电子晶格,且由于相互排斥作用,不再有助于传输电荷,导致系统对电绝缘。哥廷根大学物理系托马斯·韦茨教授表示,新系统的主要优势之一在于材料制备非常简单,研究人员不需要像以前那样在高温下才能获得所需结果,可用于进一步研究各种量子态及量子计算机等。PC版:https://www.cnbeta.com/articles/soft/1305337.htm手机版:https://m.cnbeta.com/view/1305337.htm

封面图片

新方法可大规模生产高质量石墨烯

新方法可大规模生产高质量石墨烯石墨烯被称为“21世纪的神奇材料”。自2004年发现以来,这种单层碳原子材料一直因其众多独特性能而备受推崇。但目前大量生产的石墨烯有个缺点:质量不高。现在,美国哥伦比亚大学和加拿大蒙特利尔大学联合研究团队开发出一种新方法,利用无氧化学气相沉积(OF-CVD)法来净化石墨烯,从而大规模生产高质量石墨烯。相关论文发表在5月29日的《自然》杂志上。更多详情→除氧可提高大规模生产石墨烯质量(科技日报)

封面图片

突破性人体研究证实"神奇材料"石墨烯是安全的

突破性人体研究证实"神奇材料"石墨烯是安全的临床试验透视首次人体受控接触临床试验使用的是超纯氧化石墨烯薄膜--一种与水兼容的材料。研究人员表示,还需要进一步研究这种氧化石墨烯材料或其他形式的石墨烯是否会产生不同的效果。研究小组还希望确定,长时间接触这种比头发丝还要细几千倍的材料是否会带来额外的健康风险。科学家于2004年首次分离出石墨烯,并将其誉为"神奇"材料。可能的应用领域包括电子产品、手机屏幕、服装、涂料和水净化。全世界都在积极探索石墨烯,以帮助对癌症和其他健康问题进行有针对性的治疗,并以植入式设备和传感器的形式使用石墨烯。不过,在用于医疗之前,所有纳米材料都需要经过测试,以确定是否存在潜在的不良影响。研究方法和结果爱丁堡大学和曼彻斯特大学的研究人员招募了14名志愿者,在严格控制的接触和临床监测条件下参与研究。志愿者们在从荷兰国家公共卫生研究所带到爱丁堡的一个专门设计的移动暴露室中骑自行车时,通过面罩呼吸了这种物质两个小时。在暴露前和每隔两小时测量一次对肺功能、血压、凝血和血液中炎症的影响。几周后,志愿者被要求返回诊所,重复接触不同大小的氧化石墨烯或清洁空气,以进行比较。结果发现,石墨烯对肺功能、血压或其他大多数生物参数没有不良影响。不过,研究人员注意到,吸入这种材料可能会影响血液凝结的方式,但他们强调这种影响非常小。结论和未来方向爱丁堡大学心血管科学中心的马克-米勒(MarkMiller)博士说:"石墨烯等纳米材料前景广阔,但我们必须确保它们是以安全的方式制造的,然后才能更广泛地应用于我们的生活。能够在人体志愿者身上探索这种独特材料的安全性,是我们在了解石墨烯如何影响人体方面迈出的一大步。通过精心设计,我们可以安全地充分利用纳米技术"。曼彻斯特大学和巴塞罗那加泰罗尼亚纳米科学与纳米技术研究所(ICN2)的科斯塔斯-科斯塔雷洛斯(KostasKostarelos)教授说:"这是有史以来第一项涉及健康人群的对照研究,它证明了非常纯净的氧化石墨烯(具有特定的尺寸分布和表面特征)可以进一步开发,从而最大限度地降低对人类健康的危害。""我们花了十多年的时间,从材料和生物科学的角度,同时也从临床能力的角度,通过召集该领域的一些世界顶尖专家,安全地开展了这项受控研究"。英国心脏基金会首席科学与医学官布莱恩-威廉姆斯(BryanWilliams)教授说:"这种石墨烯可以安全地开发出来,而且短期副作用极小,这一发现为开发新设备、创新治疗方法和监测技术打开了大门。我们期待在更长的时间内看到更大规模的研究,以更好地了解我们如何安全地使用石墨烯等纳米材料,在向患者提供救命药物方面取得飞跃。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418551.htm手机版:https://m.cnbeta.com.tw/view/1418551.htm

封面图片

石墨烯研究的最新进展有助于廉价、可持续地生产氢气

石墨烯研究的最新进展有助于廉价、可持续地生产氢气这一科学传奇始于十年前,当时曼彻斯特大学的科学家证明了石墨烯对氢原子核质子的渗透性。这一发现出乎意料,与理论预测相悖,理论预测认为质子需要数十亿年才能穿过石墨烯致密的晶体结构。由于这种差异,有一种理论认为质子可能是通过石墨烯结构中的小孔(或针孔)而不是晶格本身渗透的。石墨烯是以二维蜂巢晶格排列的单层碳原子。石墨烯以其卓越的强度、导电性和超薄性而闻名,是科学和技术领域最有前途的多功能材料之一。最近,由PatrickUnwin教授领导的华威大学和由MarceloLozada-Hidalgo博士和AndreGeim教授领导的曼彻斯特大学联合在《自然》杂志上发表了他们的研究成果。通过超高空间分辨率测量,他们最终证明了完美的石墨烯晶体确实允许质子传输。令人惊讶的是,他们还发现质子在石墨烯晶体中存在的纳米级皱纹和波纹周围被强烈加速。质子在二维晶体中传输的意外不均匀性。资料来源:《自然》/DOI:10.1038/s41586-023-06247-6对氢经济的影响这一突破性发现对氢经济具有重大意义。目前生成和使用氢气的机制通常依赖于昂贵的催化剂和薄膜,其中一些对环境有显著影响。用石墨烯等可持续二维晶体取代这些材料,可在推进绿色制氢、减少碳排放和帮助实现净零碳环境方面发挥关键作用。为了得出结论,研究人员采用了扫描电化学电池显微镜(SECCM)。这项技术使他们能够测量纳米级区域的微小质子电流,让研究人员能够直观地看到质子电流通过石墨烯膜的空间分布。如果质子运动仅限于石墨烯上的孔,那么电流就会被隔离在特定的点上。然而,并没有观察到这种集中的电流,从而推翻了关于石墨烯结构中存在孔洞的理论。研究人员的评论和观察该研究的主要作者SegunWahab博士和EnricoDaviddi博士对石墨烯晶体中没有缺陷表示惊讶,他们说:"我们惊讶地发现石墨烯晶体中完全没有缺陷。我们的研究结果从微观上证明了石墨烯对质子具有内在的渗透性"。意想不到的是,质子电流在晶体纳米级皱纹周围被加速。科学家们发现,这是因为皱纹有效地"拉伸"了石墨烯晶格,从而为质子渗透原始晶格提供了更大的空间。现在,这一观察结果使实验与理论相吻合。洛萨达-伊达尔戈博士说:"我们实际上是在拉伸原子尺度的网格,并观察到更大的电流通过网格中被拉伸的原子间空间--这确实令人匪夷所思"。Unwin教授评论道:"这些结果展示了我们实验室开发的SECCM是一种从微观角度深入了解电化学界面的强大技术,它为设计涉及质子的下一代膜和分离器开辟了令人兴奋的可能性。"研究小组对这一发现如何为新型氢技术铺平道路持乐观态度。Lozada-Hidalgo博士说:"利用二维晶体中波纹和褶皱的催化活性是加速离子传输和化学反应的一种全新方法。这可能导致氢相关技术的低成本催化剂的开发。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379509.htm手机版:https://m.cnbeta.com.tw/view/1379509.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人