科学家发现一种新的遗传性眼病

科学家发现一种新的遗传性眼病美国国家眼科研究所(NEI)的研究人员发现了一种损害黄斑的新疾病,黄斑是敏锐的中央视力所需的光感视网膜的一个小区域。研究人员在《美国医学会眼科杂志》上发表了他们对这种未命名的新黄斑营养不良症的发现。NEI是美国国立卫生研究院的一个分支机构。黄斑营养不良症是一种疾病,由于各种基因的异常,包括ABCA4、BEST1、PRPH2和TIMP3的异常,常常导致中央视力丧失。例如,Sorsby眼底营养不良(SFD)是一种遗传性眼病,与TIMP3变异特别相关,患者往往在成年后出现症状。由于脉络膜新生血管,即在视网膜后面生长出新的、不规则的血管,渗出液体并破坏视力,他们经常会出现视力的突然变化。TIMP3是一种有助于调节视网膜血流的蛋白质,由视网膜色素上皮(RPE)分泌,RPE是滋养和支持视网膜光感光体的一层组织。所有报告的TIMP3基因突变都是在成熟的蛋白质中,在一个称为裂解的过程中从RPE细胞中“切割”出来。“我们发现,令人惊讶的是,两名患者的TIMP3变体不在成熟蛋白中,而是在该基因用于从细胞中‘切割’蛋白的短信号序列中。我们的研究显示这些变体阻止了裂解,导致蛋白质滞留在细胞中,很可能导致视网膜色素上皮细胞的毒性,”主要作者BinGuan博士说。研究小组对这些发现进行了临床评估和家族成员的基因测试,以验证这两个新的TIMP3变体与这种非典型黄斑病有关。拉斯克终身研究员、医学视网膜专家、临床评估患者的CathyCukras博士说:“受影响的人有光斑,或盲点,以及表明疾病的变化,但就目前而言,他们的中心视力得以保留,没有脉络膜新生血管,与典型的Sorsby眼底营养不良不同。”NEI的眼科基因组学实验室收集和管理被招募到NEI临床项目中的多项研究的患者的标本和诊断数据,以促进对罕见眼病的研究,包括索斯比眼底营养不良症。高级作者、NEI眼科基因组学实验室主任、医学博士RobHufnagel说:“发现新的疾病机制,甚至像TIMP3这样的已知基因,可能会帮助那些一直在寻找正确诊断的病人,并有望为他们带来新的治疗方法。”...PC版:https://www.cnbeta.com/articles/soft/1307515.htm手机版:https://m.cnbeta.com/view/1307515.htm

相关推荐

封面图片

临床试验显示:基因编辑疗法可改善遗传性失明患者视力

临床试验显示:基因编辑疗法可改善遗传性失明患者视力美国麻省眼耳医院和俄勒冈健康与科学大学联合开展的一项研究表明,在接受CRISPR基因编辑实验性治疗后,大约79%的遗传性视网膜变性临床试验参与者症状得到改善。研究论文发表在最新一期《新英格兰医学杂志》上。EDIT-101是一种使用CRISPR技术的实验性基因编辑疗法。此次试验评估了EDIT-101的安全性和有效性,实验性治疗用于编辑中心体蛋白290(CEP290)基因中的突变,该基因指令负责表达对视力至关重要的蛋白质。(科技日报)

封面图片

科学家发现葡萄对健康的新益处

科学家发现葡萄对健康的新益处这是首次对人类进行这方面的研究,研究结果加强了之前的初步研究,这些研究发现食用葡萄可以保护视网膜结构和功能。科学研究表明,老龄人口患眼疾和视力问题的风险较高。眼部疾病的主要风险因素包括:1)氧化应激;2)高水平的眼部高级糖化终产物(AGEs)。AGEs会破坏视网膜的血管成分、损害细胞功能并导致氧化应激,从而引发多种眼部疾病。膳食抗氧化剂可以减少氧化应激,抑制AGEs的形成,从而可能对视网膜产生有益的影响,如改善黄斑色素光学密度(MPOD)。葡萄是抗氧化剂和其他多酚的天然来源。在这项新研究中,34名受试者在16周内食用葡萄(相当于每天1½杯葡萄)或安慰剂。与服用安慰剂的受试者相比,食用葡萄的受试者的MPOD、血浆抗氧化能力和总酚类物质含量都有明显增加。而那些不吃葡萄的人,皮肤中测得的有害AGEs则明显增加。JungEunKim博士说:"我们的研究首次表明,食用葡萄有益于人类的眼睛健康,这非常令人兴奋,尤其是随着老龄化人口的不断增加。葡萄是一种简单易得的水果,研究表明,每天正常食用1½杯葡萄就能产生有益的影响。"...PC版:https://www.cnbeta.com.tw/articles/soft/1389403.htm手机版:https://m.cnbeta.com.tw/view/1389403.htm

封面图片

运用纳米颗粒和mRNA可能成为遗传性失明的新疗法

运用纳米颗粒和mRNA可能成为遗传性失明的新疗法这项研究今天(2023年1月11日)发表在《科学进展》杂志上。该研究由俄勒冈大学制药科学副教授GauravSahay、俄勒冈州立大学博士生MarcoHerrera-Barrera和俄勒冈健康与科学大学眼科助理教授ReneeRyals领导。科学家们克服了使用脂质纳米颗粒(LNP)携带遗传物质进行视力治疗的主要限制--让它们到达眼睛的后面,即视网膜的位置。脂质是脂肪酸和类似的有机化合物,包括许多天然油和蜡,纳米粒子是尺寸从十亿分之一到十亿分之一米不等的小块材料,信使RNA向细胞传递制造特定蛋白质的指令。在冠状病毒疫苗中,LNP携带的mRNA指示细胞制造一种无害的病毒尖峰蛋白,从而引发身体的免疫反应。作为对遗传性视网膜变性(IRD)导致的视力障碍的治疗,mRNA将指示光感受器细胞,该病是因为基因突变导致制造视力所需的蛋白质出现问题。IRD包括一组严重程度和流行程度不同的疾病,全世界每几千人中就有一人受到影响。科学家们在涉及小鼠和非人灵长类动物的研究中表明,配备有肽的LNP能够穿过眼睛的障碍,到达神经视网膜,在那里光被转化为电信号,大脑将其转换为图像。Sahay说:"我们确定了一套新的肽,可以到达眼睛的后面。我们用这些肽充当'邮编',将携带遗传物质的纳米颗粒送到眼睛内的预定地址。"Herrera-Barrera补充说:"我们发现的肽可以作为直接与沉默的RNA、小分子治疗剂相连接的靶向配体,或者作为成像探针。"Sahay和Ryals获得了国家眼科研究所的320万美元资助,继续研究脂质纳米颗粒在治疗遗传性失明方面的前景。他们将领导使用脂质纳米颗粒来提供一种基因编辑工具的研究,这种工具可以删除光感受器细胞中的坏基因,并用功能正确的基因取代它们。这项研究的目的是为目前基因编辑的主要传递方式的局限性开发解决方案:一种被称为腺相关病毒,或AAV的病毒类型。Sahay说:"与LNP相比,AAV的包装能力有限,而且它能引起免疫系统反应。它也不能很好地继续表达编辑工具所使用的酶,作为分子剪刀在待编辑的DNA上进行切割。我们希望利用我们迄今为止对LNP的了解来开发一种改进的基因编辑传递系统。"...PC版:https://www.cnbeta.com.tw/articles/soft/1338761.htm手机版:https://m.cnbeta.com.tw/view/1338761.htm

封面图片

科学家们发现表观遗传可能比以前认为的更频繁地发生

科学家们发现表观遗传可能比以前认为的更频繁地发生一项有关胚胎健康发育的驱动因素的基本发现可能会改写我们对我们能从父母那里继承什么以及他们的生活经历如何塑造我们的理解。这项新研究揭示了表观遗传信息,它位于DNA之上,通常在两代人之间重置,比以前认为的更普遍地从母亲传给孩子。这项研究由澳大利亚墨尔本沃尔特和伊丽莎-霍尔医学研究所(WEHI)的研究人员领导,大大扩展了我们对哪些基因的表观遗传信息从母亲传递给后代的知识,以及哪些蛋白质对控制这一奇特过程至关重要。表观遗传学是一个迅速扩大的科学领域,它研究我们的基因如何被打开和关闭,以使一组遗传指令在我们的身体中产生数百种不同的细胞类型。环境因素,如我们的营养,可以影响表观遗传学的变化,但这些变化不会改变DNA,一般不会从父母那里传给孩子。尽管一小部分“印记”基因可能会将表观遗传信息传给后代,但到目前为止,很少有其他基因被证明会受到母亲的表观遗传状态的影响。根据最近的研究,母亲的卵子中某种蛋白质的供应可能对驱动儿童骨骼模式的基因产生影响。首席调查员MarnieBlewitt教授说,这些发现最初让研究小组感到惊讶。WEHI表观遗传学和发育部门联合负责人Blewitt教授说:“我们花了一段时间来处理,因为我们的发现是出乎意料的。知道来自母亲的表观遗传学信息可以对身体形态产生终身的影响是令人兴奋的,因为它表明这种情况的发生远远超过了我们的想象。它可能会打开一个‘潘多拉盒子’,让我们了解还有哪些表观遗传信息正在被继承。”这项研究由WEHI的科学家们领导,与蒙纳士大学和澳大利亚再生医学研究所的EdwinaMcGlinn副教授合作,最近发表在《自然通讯》杂志上。目前的研究集中在对正常骨骼发育至关重要的Hox基因和蛋白质SMCHD1,这是Blewitt教授在2008年发现的一个表观遗传调节器。在哺乳动物的胚胎发育过程中,Hox基因决定了每个椎体的身份,而表观遗传调节器则防止这些基因过早地被激活。根据这项研究的结果,母亲卵子中SMCHD1的数量影响着Hox基因的活性和胚胎的模式化。如果卵子中没有母体的SMCHD1,孩子出生时的骨骼结构就会发生改变。据第一作者和博士研究员NataliaBenetti说,这清楚地证明了表观遗传信息而不仅仅是蓝图遗传信息是从母亲那里传递过来的。“虽然我们的基因组中有2万多个基因,但只有那罕见的约150个印记基因的子集和极少数其他基因被证明可以将表观遗传信息从一代带到另一代,”Benetti说。“知道这种情况也发生在从苍蝇到人类的进化过程中一直保守的一组基本基因上,这很吸引人。”研究表明,卵子中的SMCHD1只在受孕后持续两天,但它会产生终身影响。SMCHD1的变异与发育障碍Bosmaarhiniamicrophthalmia综合症(BAMS)和小儿面肩肱型肌营养不良(FSHD)(一种肌肉营养不良症)有关。研究人员说,他们的发现可能对患有SMCHD1变体的女性和她们的孩子在未来产生影响。WEHI的一项药物发现工作目前正在利用该团队建立的SMCHD1知识来设计新型...PC版:https://www.cnbeta.com/articles/soft/1313299.htm手机版:https://m.cnbeta.com/view/1313299.htm

封面图片

肌营养不良症 是一组遗传性肌肉疾病,其中一个或多个对正常肌肉结构和功能至关重要的基因有缺陷,导致不同程度的肌肉无力。主要症状是肌

肌营养不良症是一组遗传性肌肉疾病,其中一个或多个对正常肌肉结构和功能至关重要的基因有缺陷,导致不同程度的肌肉无力。主要症状是肌肉无力,包括心肌和呼吸肌。症状仅发生在男孩身上。临床建议诊断并通过基因检测或突变基因的蛋白质产物(肌营养不良蛋白)分析确认。治疗的目的是通过物理治疗、使用矫形支架和矫形器具以及有时进行手术来维持功能。#畸形#疾病#医学推荐频道@wxcnb_vip@fanchabbbb@baocaosaohuo@lieqibb@shuiguopai_vip

封面图片

科学家在人类身上发现155个新基因 都是“从0出现”

科学家在人类身上发现155个新基因都是“从0出现”这些基因虽然非常小(microgenes),但对人体的作用却不可忽视,有些甚至与人类的某些特异性疾病有关,包括肌肉萎缩症、色素性视网膜炎等。目前,这项研究正式登上《细胞》子刊CellReports,通讯作者之一AoifeMcLysaght兴奋地表示:这是一个全新的领域。这些基因往往被忽略,因为它们很难研究,但人们会越来越意识到它们是需要被关注和考虑的。那么这些新基因究竟是什么,它们又长啥样?这些新基因是什么?这些新基因的出现,最初“并不起眼”——是以sORF的形态出现的。ORF(openreadingframe),全称“开放阅读框”,是基因序列的一部分,包含一段可以编码蛋白的碱基序列。sORF(smallORF)顾名思义,则是一种体积非常小的ORF,一般由不到300个核苷酸构成。虽然大部分sORF的出现只是一种生物噪声(导致细胞内mRNA和蛋白质产生变化的一种生化反应),但许多依旧具有编码微蛋白(microprotein)的潜能。但sORF毕竟太小了,此前受限于技术,一直被研究得不多,大部分基因也都没有被注释,更别提用它编码出的微蛋白了。然而,微蛋白的研究对于生物研究又是不可或缺的。毕竟对于某些已经有研究的生物学过程,微蛋白很可能也会参与其中,并在生理和病理过程中发挥重要作用,然而这些作用此前却是未知的。随着技术的进步,不少生物科学家们开始尝试重新探索这一领域,试图通过研究微蛋白,来探讨它们对人类健康和疾病造成的影响。根据长期对比观察微蛋白,科学家们找到了一些sORF序列,这些序列具有高度保守性,被称为高度保守序列(highlyconserved)。高度保守序列,指在不同类型生物体中非常相似的DNA序列。研究认为这些跨物种的相似性,可以证明某个基因完成了不同生物中的共同基本功能,因此在进化过程中保留了这些序列。大多数研究都会排除非保守性、新颖的基因序列。这次,欧洲科学家们就基于一个从非规范ORF转译而来的微蛋白数据集,重构了人类微蛋白的进化起源。结果,还真发现了不少此前没注意到的基因。44个与生命健康有关首先,科学家们根据数据集,将这次发现的新基因与四种类人猿(apes)的基因进行了比较。类人猿包括黑猩猩(chimpanzee)、大猩猩(gorilla)、猩猩(orangutan)和长臂猿(gibbon)。根据祖先序列重建(ASR,ancestralsequencereconstruction),研究者们发现,与其他几种类人猿动物相比,人类这些新生成的基因确实是从无到有(denovo)产生的:整体与各种脊椎动物进行对比后,研究人员发现了155个新的微基因,其起源和表型如下图:具体来说,在这155个新基因中,有44个与细胞培养物中的生长缺陷有关。值得一提的是,这44个基因之前并没有被科学家们重视。论文介绍称,包括PhyloCSF在内的比较基因组学方法,都没有将它预测为一个保守的蛋白质编码区,即能发挥功能性作用的。然而,这些基因却在维持生命系统健康过程中扮演了重要角色。除此之外,科学家们还发现了3个包含与疾病相关DNA标记的基因。这些标记分别与肌肉萎缩症、色变性视网膜炎和阿拉基综合征有关联。这三种基因的起源中,肌肉萎缩症可以追溯到类人猿下目(Simiiformes),色素性视网膜炎则能被追溯到羊膜动物(Amniota)。至于阿拉基综合征,此前被认为是人类特异性的,但直系同源基因也在黑猩猩中被转录,推测起源于人类和黑猩猩的共同祖先。除了疾病,研究人员还发现了一种与人类心脏组织密切相关的新基因。据作者介绍,它从大猩猩分裂出来后,立即出现在人类和黑猩猩身上:它的出现,证明了一个基因进化成为“人体必需品”的速度有多快。关于作者一作NikolaosVakirlis,来自希腊瓦里“亚历山大·弗莱明”生物医学科学研究中心。他表示这项研究早在2017年就已经开始了,不过中途搁置了很久,直到一项新的研究发表,该研究中有一些数据对他们很有用,帮助他们重新开始了项目。剩下三位作者具有同等贡献,其中AoifeMcLysaght作为生物遗传学领域专家、通讯作者,则来自都柏林三一学院。她表示,他们研究的这些小尺寸DNA,基本处于基因组序列可解释的边缘、处于很难知道它是否具有生物学意义的区域,但真的很有意思。而在未来,作者们表示,他们会进一步地研究新发现的这些微基因究竟会起什么作用,了解它们是否可能直接参与某种类型疾病的形成。“这仍将非常有趣。”...PC版:https://www.cnbeta.com.tw/articles/soft/1336347.htm手机版:https://m.cnbeta.com.tw/view/1336347.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人