MIT化学家们发现一种可改变形状的受体如何影响细胞生长

MIT化学家们发现一种可改变形状的受体如何影响细胞生长在细胞表面发现的受体与激素、蛋白质和其他分子结合,帮助细胞对其环境做出反应。麻省理工学院(MIT)的化学家们现在发现了这些受体中的一个在与目标结合时如何改变其形状,以及这些变化如何导致细胞的生长和增殖。这种受体被称为表皮生长因子受体(EGFR),在许多类型的癌症中被过度表达。事实上,它是几种癌症药物的目标。尽管这些药物一开始往往效果很好,但肿瘤会对它们产生抗药性。麻省理工学院化学系副教授GabrielaSchlau-Cohen说,更好地了解这些受体的机制可能有助于研究人员设计出能够规避这种抗性的药物。她说:“思考针对表皮生长因子受体的更普遍的机制是一个令人兴奋的新方向,并给你一个新的途径来思考可能的疗法,这些疗法可能不那么容易进化出抗药性。”Schlau-Cohen和Pfizer-Laubach化学职业发展助理教授张斌(音译)是这项研究的资深作者,该研究最近发表在《自然通讯》杂志上。论文的主要作者是麻省理工学院的研究生ShwethaSrinivasan和前麻省理工学院博士后RajuRegmi。EGFR是帮助细胞生长调节的许多受体之一。它存在于大多数类型的哺乳动物上皮细胞上,这些细胞排列在身体表面和器官上,除了EGF之外,还能对几种类型的生长因子做出反应。一些类型的癌症,特别是肺癌和胶质母细胞瘤,过度表达EGFR,这可能导致不受控制的生长。像大多数细胞受体一样,EGFR跨越了细胞膜。受体的细胞外区域与其目标分子(也称为配体)相互作用;跨膜部分嵌入膜内;而细胞内部分则与控制生长途径的细胞机器相互作用。受体的细胞外部分已被详细分析,但跨膜和细胞内部分一直难以研究,因为它们更无序,不能被结晶化。大约五年前,Schlau-Cohen开始尝试进一步了解这些鲜为人知的结构。她的研究小组将这些蛋白质嵌入到一种特殊的自组装膜中,这种膜被称为纳米盘,模仿细胞膜。然后,她使用单分子荧光共振能量转移(FRET)来研究当受体与EGF结合时其构象如何变化。FRET通常用于测量两个荧光分子之间的微小距离。研究人员用两种不同的荧光团标记了纳米盘膜和蛋白质的细胞内尾巴末端,这使得他们能够在各种情况下测量蛋白质尾巴和细胞膜之间的距离。令他们惊讶的是,科学家们发现,EGF的结合导致了受体构象的重大变化。大多数受体信号的模型涉及多个跨膜螺旋的相互作用,以带来大规模的构象变化,但EGF受体在膜内只有一个螺旋段,似乎在不与其他受体分子相互作用的情况下发生了这种变化。Schlau-Cohen说:“单一的α螺旋能够传递如此大的构象重排的想法确实让我们感到惊讶。”为了进一步了解这种形状变化将如何影响受体的功能,Schlau-Cohen的实验室与张斌合作,后者的实验室对分子相互作用进行计算机模拟。这种建模被称为分子动力学,可以模拟一个分子系统如何随时间变化。该模型显示,当受体与EGF结合时,受体的细胞外部分垂直竖立,而当受体未被结合时,它平躺在细胞膜上。类似于铰链的关闭,当受体平放时...PC版:https://www.cnbeta.com/articles/soft/1311673.htm手机版:https://m.cnbeta.com/view/1311673.htm

相关推荐

封面图片

人工智能如何协助科学家找到让CAR-T细胞杀死癌细胞的“词汇”

人工智能如何协助科学家找到让CAR-T细胞杀死癌细胞的“词汇”这项研究最近发表在《科学》杂志上,它是第一次将先进的计算技术应用于一个传统上通过试错实验和使用预先存在的分子而不是合成分子来设计细胞的领域。这一进展使科学家能够预测他们应该在细胞中包括哪些元素--天然的或合成的--以使其具有有效应对复杂疾病所需的精确行为。癌症是一种以身体内细胞的异常生长和分裂为特征的疾病。肿瘤可以影响身体的任何部分,可以是良性的(非癌症)或恶性的(癌症),通过血液或淋巴系统扩散到身体的其他部分。细胞和分子药理学拜尔斯特聘教授温德尔-林博士说:"这是该领域的一个重要转变,只有拥有这种预测能力,我们才能到达一个地方,迅速设计出新的细胞疗法,开展所需的活动。"他是加州大学旧金山分校细胞设计研究所的负责人,并领导了这项研究。大部分治疗性细胞工程涉及选择或创造受体,当这些受体被添加到细胞中时,将使其能够执行新功能。受体是架设在细胞膜上的分子,用于感知外部环境,并向细胞提供如何应对环境条件的指令。将正确的受体放入一种称为T细胞的免疫细胞中,可以重新编程,使其识别并杀死癌细胞。这些所谓的嵌合抗原受体(CARs)已经对一些癌症有效,但对其他癌症无效。Lim和主要作者KyleDaniels博士是Lim实验室的研究员,他们关注的是位于细胞内部的受体部分,包含一串氨基酸,每个图案都像一个命令"单词",指导细胞内的一个行动。这些词如何被串联成一个"句子",决定了细胞将执行什么命令。今天的许多CAR-T细胞被设计成带有受体,指示它们杀死癌症,但也在短时间内休息一下,就像说:"打掉一些流氓细胞,然后休息一下。"结果是,癌症可以继续生长。该团队认为,通过以不同的方式组合这些"词语",他们可以产生一种受体,使CAR-T细胞能够完成工作而不需要休息。他们制作了一个由近2400个随机组合的命令句子组成的图书馆,并在T细胞中测试了其中的数百个,以了解它们在打击白血病方面的有效性。接下来,Daniels与计算生物学家SimoneBianco博士合作,他在研究时是IBMAlmaden研究中心的研究经理,现在是Altos实验室的计算生物学主任。比安科和他的团队,也是在IBMAlmeden的研究人员萨拉-卡波尼博士,以及当时在IBM做博士后、现在在Altos实验室的王尚英博士,将新的机器学习方法应用于数据,生成全新的受体句子,他们预测这将更加有效。"我们改变了句子中的一些词语,并赋予它新的含义,"丹尼尔斯说。"我们预测性地设计了T细胞,它们不需要休息就能杀死癌症,因为新的句子告诉它们,'把那些流氓肿瘤细胞打掉,然后继续打'。""整体绝对大于部分之和,"Bianco说。"它使我们不仅能够更清楚地了解如何设计细胞疗法,而且能够更好地理解生命本身的基本规则,以及生物如何做它们所做的事情。"鉴于这项工作的成功,卡波尼补充说:"我们将把这种方法扩展到多样化的实验数据中,并希望能重新定义T细胞设计"。研究人员相信这种方法将产生用于自身免疫、再生医学和其他应用的细胞疗法。丹尼尔斯对设计自我更新的干细胞感兴趣,以消除对献血的需求。他说,这种计算方法的真正力量超出了制作命令句子的范围,而是理解分子指令的语法。丹尼尔斯说:"这是制作细胞疗法的关键,它能准确地完成我们希望它们做的事情。这种方法促进了从理解科学到工程的现实应用的飞跃。"...PC版:https://www.cnbeta.com.tw/articles/soft/1339927.htm手机版:https://m.cnbeta.com.tw/view/1339927.htm

封面图片

科学家发现一种触发癌细胞凋亡的“开关”

科学家发现一种触发癌细胞凋亡的“开关”这项研究成果最近发表在《细胞死亡与分化》(CellDeath&Differentiation)杂志上。CD95受体又称Fas,通常被称为"死亡受体"。这些蛋白质结构存在于细胞膜内,一旦被激活,就会释放出导致细胞自毁的信号。调节Fas还可以将嵌合抗原受体(CAR)T细胞疗法的益处扩大到卵巢癌等实体瘤。医学微生物学和免疫学系副教授、该研究的资深作者乔根德-图希尔-辛格(JogenderTushir-Shingh)说:"我们找到了细胞毒性Fas信号以及CART细胞旁观者抗肿瘤功能的最关键表位。以前针对这种受体的研究一直没有成功。但现在我们确定了这个表位,就有可能找到针对肿瘤中Fas的治疗方法。"寻找更好的癌症疗法癌症一般通过手术、化疗和放疗来治疗。这些疗法最初可能有效,但在某些情况下,耐药性癌症往往会复发。免疫疗法,如基于CART细胞的免疫疗法和免疫检查点受体分子激活抗体,已显示出打破这种循环的巨大前景。但它们只能帮助极少数患者,尤其是卵巢癌、三阴性乳腺癌、肺癌和胰腺癌等实体瘤患者。T细胞是一种免疫细胞。CART细胞疗法是将患者的T细胞与特定的肿瘤靶向抗体嫁接,从而改造T细胞来攻击肿瘤。这些改造过的T细胞对白血病和其他血癌有疗效,但对实体瘤却屡试不爽。究其原因,肿瘤微环境善于阻挡T细胞和其他免疫细胞。抗原阳性的肿瘤细胞(左图,蓝色)是CART细胞(浅红色)的直接靶点,因为抗体与抗原之间存在高亲和力接触。相反,抗原阴性的肿瘤细胞(浅金色,右图)则会被Fas介导的"旁观者"杀死。Fas高表达的癌症患者有望对免疫疗法产生更好的反应。图片来源:加州大学戴维斯分校图希尔-辛格说:"这些肿瘤通常被称为冷肿瘤,因为免疫细胞根本无法穿透微环境提供治疗效果。如果免疫受体激活抗体和T细胞无法接近肿瘤细胞,那么我们设计得再好也无济于事。因此,我们需要创造空间,让T细胞能够渗入。"死亡受体的作用正如它们的名字所暗示的那样--当靶向它们时,它们会触发肿瘤细胞的程序性细胞死亡。它们提供了一种潜在的变通方法,可以同时杀死肿瘤细胞,并为更有效的免疫疗法和CART细胞疗法铺平道路。开发能增强死亡受体活性的药物可以提供一种重要的抗肿瘤武器。不过,虽然制药公司在针对死亡受体-5的研究上取得了一些成功,但还没有Fas激动剂进入临床试验阶段。这些发现有可能改变这一现状。正确的靶点虽然Fas在调节免疫细胞方面起着至关重要的作用,但图希尔-辛格和他的同事知道,如果他们找到了正确的表位,就有可能选择性地靶向癌细胞。在确定了这一特定表位后,他和其他研究人员现在可以设计一类新型抗体,选择性地与Fas结合并激活Fas,从而有可能特异性地摧毁肿瘤细胞。在动物模型和人体临床试验中进行的其他研究表明,Fas信号转导是CART成功的基础,尤其是在基因异质性肿瘤中。基因异质性肿瘤混合了不同的细胞类型,对治疗的反应也不尽相同。Fas激动剂可能会产生CAR-T旁观者效应,即治疗会破坏那些缺乏肿瘤靶向抗体所针对的分子的癌细胞。换句话说,激活Fas可以摧毁癌细胞,提高CAR-T的疗效,这可能是对抗肿瘤的一记重拳。事实上,研究表明,Fas受体表位突变的肿瘤根本不会对CART产生反应。这一发现可能会带来新的检测方法,以确定哪些患者将从CART细胞免疫疗法中获益最多。Tushir-Singh说:"我们应该先了解患者的Fas状态,特别是发现的表位周围的突变,然后再考虑给他们使用CART。这是CART疗法的旁观者疗效的明确标志。但最重要的是,这为开发能激活Fas、选择性杀死肿瘤细胞的抗体奠定了基础,并有可能为实体瘤的CART细胞疗法提供支持。"...PC版:https://www.cnbeta.com.tw/articles/soft/1392701.htm手机版:https://m.cnbeta.com.tw/view/1392701.htm

封面图片

细胞是如何自我凋亡的?科学家在原子层面上解读了确切的机制

细胞是如何自我凋亡的?科学家在原子层面上解读了确切的机制细胞的自我淘汰是所有生物体的一个重要过程。当细胞受损或被病毒或细菌感染时,它们会启动一个内部"自毁"程序。这一重要机制抵御了肿瘤的潜在增长,并防止了有害病原体在整个身体的传播。直到最近,人们还认为细胞只是在其生命的最后时刻爆裂和死亡。现在,巴塞尔大学生物中心、洛桑大学和苏黎世联邦理工学院生物系统科学与工程系(D-BSSE)的研究人员已经对细胞死亡的最后一步有了新的认识。在科学杂志《自然》中,他们描述了一种名为ninjurin-1的蛋白质如何组装成丝状物,像拉链一样发挥作用并打开细胞膜,从而导致细胞的解体。这一新的见解是了解细胞死亡的一个重要里程碑。蛋白质作为细胞膜的一个断裂点各种信号,如细菌成分触发了细胞死亡机制。在这个过程的最后阶段,细胞的保护膜被微小的孔洞破坏,这些孔洞允许离子流入细胞。巴塞尔大学生物中心(Biozentrum)的研究小组负责人塞巴斯蒂安-希勒(SebastianHiller)教授解释说:"通常的理解是,细胞随后膨胀,直到最后因渗透压增加而爆裂。我们现在正在解决细胞如何真正破裂的问题。蛋白质ninjurin-1不是像气球一样爆裂,而是在细胞膜上提供了一个断裂点,导致特定部位的破裂。"在其生命的最后阶段,细胞并不是简单地爆裂。相反,一种特定的蛋白质作为细胞膜破裂的突破点。SNI博士生莫里斯-德根(巴塞尔大学生物中心)解释了这一机制是如何运作的。利用高灵敏度显微镜和核磁共振光谱等先进技术,科学家们已经能够阐明ninjurin-1在单个原子水平上诱发膜破裂的机制。Ninjurin-1是一种嵌入细胞膜的小蛋白质。"收到凋亡命令后,两个ninjurin-1蛋白最初聚集在一起,并将一个楔子打入膜中,"该研究的第一作者、瑞士纳米科学研究所博士学院的博士生MorrisDegen解释说。"大型病变和孔洞是由许多进一步的蛋白质附着在最初的楔子上形成的。通过这种方式,细胞膜被一块一块地劈开,直到细胞完全解体"。然后,细胞碎片被人体自身的清洁服务所清除。"很明显,没有ninjurin-1,细胞就不会破裂。由于离子的涌入,它们确实在一定程度上膨胀,但膜的破裂取决于这种蛋白质的功能,"希勒补充说。"教科书中关于细胞死亡的章节将因这些美丽的结构见解而得到扩展。"对细胞死亡的更深入了解将有助于寻找新的药物目标。治疗癌症的干预措施是可以想象的,因为一些肿瘤细胞会逃避程序性细胞死亡。此外,在神经退行性疾病(如帕金森病)或危及生命的疾病(如败血症)中观察到的细胞过早死亡的情况下,干预这一过程的药物是一种潜在的治疗选择。...PC版:https://www.cnbeta.com.tw/articles/soft/1363381.htm手机版:https://m.cnbeta.com.tw/view/1363381.htm

封面图片

新研究发现细胞膜损伤会导致细胞衰老

新研究发现细胞膜损伤会导致细胞衰老日本科研人员的一项新研究显示,细胞膜受损除了导致细胞的死亡或自我修复外还有第三种可能——导致细胞衰老。新华社报道,细胞膜是细胞的一层厚约五纳米的“防护外壳”,相当于肥皂泡厚度的二十分之一。这层薄膜易受机体活动损伤,也具有自我修复能力。一直以来,人们认为细胞在细胞膜受损后,要么修复要么死亡。日本冲绳科学技术大学院大学的研究人员开发了一种诱导芽殖酵母细胞和人体成纤维细胞的细胞膜损伤的方法。通过全基因组测序筛选等检测,研究人员发现细胞膜损伤限制了芽殖酵母细胞的复制能力;在成纤维细胞中,细胞膜损伤会导致细胞过早衰老。普通细胞的分裂能力是有限的——大约分裂50次后就无法再继续,随后便进入细胞衰老状态。此外,在实验室环境中,脱氧核糖核酸(DNA)损伤、端粒缩短、致癌基因激活等因素也会诱发细胞衰老。长期以来,研究界一直认为细胞衰老其实都是通过激活DNA损伤反应来诱导的。然而,研究人员在此次研究中发现,细胞膜损伤导致细胞衰老的机制并不通过常规的激活DNA损伤反应来诱导,而是独立于此的另外机制,且细胞膜损伤导致的细胞衰老过程比激活DNA损伤反应诱导的衰老过程慢。近年的研究显示,清除动物和人体内的衰老细胞可以改善与年龄相关的疾病。研究人员认为,该研究结果有助于制定未来增进健康、延年益寿的策略。这一研究成果发表在新一期英国《自然·老化》杂志上。2024年2月27日12:18PM

封面图片

科学家揭示一种肺癌如何转化为另一种肺癌

科学家揭示一种肺癌如何转化为另一种肺癌研究人员捕捉到肺癌转化的蛛丝马迹:免疫荧光图像显示,小细胞肺癌(紫粉色)在小鼠肺部的支气管(绿色)中扩散,支气管中含有残留的肺腺癌肿瘤细胞(蓝色)。图片来源:瓦默斯实验室埃里克-加德纳博士研究人员的研究结果发表在《科学》(Science)杂志上,他们发现,在从肺腺癌向小细胞肺癌(SCLC)转变的过程中,突变细胞似乎通过一种类似干细胞的中间状态发生了细胞身份的改变,从而促进了转变。"在人类患者身上研究这一过程非常困难。因此,我的目标是在小鼠模型中揭示肺腺癌向小细胞肺癌转化的内在机制,"研究带头人埃里克-加德纳博士说,他是刘易斯-托马斯大学医学教授、威尔康奈尔医学院桑德拉和爱德华-迈耶癌症中心成员哈罗德-瓦尔穆斯博士实验室的博士后研究员。这种复杂的小鼠模型耗时数年才开发完成并定性,但却让研究人员破解了这一难题。这项研究是与生理学和生物物理学助理教授、威尔康奈尔医学院迈耶癌症中心成员阿什利-劳格尼(AshleyLaughney)博士,以及劳格尼实验室研究生、三院计算生物学和医学项目成员伊桑-厄利(EthanEarlie)合作进行的。瓦默斯博士说:"众所周知,癌细胞会不断进化,尤其是为了逃避有效治疗的压力。这项研究表明,新技术(包括检测单个癌细胞的分子特征)与基于计算机的数据分析相结合,可以描绘出致命癌症进化过程中戏剧性的复杂事件,揭示出新的治疗目标。"SCLC最常发生在重度吸烟者身上,但这种类型的肿瘤也发生在相当多的肺腺癌患者身上,尤其是在接受了针对一种叫做表皮生长因子受体(EGFR)的蛋白质的治疗后,这种蛋白质会促进肿瘤生长。新的SCLC型肿瘤对抗表皮生长因子受体疗法具有抗药性,因为它们的生长是由一种新的癌症驱动因子--高水平的Myc蛋白所推动的。为了揭示这些癌症途径之间的相互作用,研究人员设计小鼠患上了一种常见的肺腺癌,在这种癌症中,肺上皮细胞受表皮生长因子受体基因突变的驱动。然后,他们把腺癌肿瘤变成了SCLC型肿瘤,这种肿瘤通常来自神经内分泌细胞。为此,他们关闭了表皮生长因子受体,同时还发生了其他一些变化,包括肿瘤抑制基因Rb1和Trp53的缺失,以及已知的SCLC驱动基因Myc的增殖。表皮生长因子受体(EGFR)和Myc等癌基因是正常控制细胞生长的基因的变异形式。它们在推动癌症生长和扩散方面的作用众所周知。另一方面,抑癌基因通常会抑制细胞增殖和肿瘤发展。令人惊讶的是,这项研究表明,致癌基因的作用方式与环境有关。虽然大多数肺细胞对Myc的致癌作用有抵抗力,但神经内分泌细胞对Myc的致癌作用却非常敏感。相反,肺气囊的上皮细胞是肺腺癌的前体,它们在表皮生长因子受体突变的作用下过度生长。Laughney博士说:"这表明,在错误的细胞类型中,'癌基因'不再像癌基因那样发挥作用。因此,它从根本上改变了我们对致癌基因的看法。"研究人员还发现了一种既不是腺癌也不是SCLC的干细胞样中间体。只有当肿瘤抑制基因RB1和TP53发生突变时,处于这种过渡状态的细胞才会变成神经内分泌细胞。他们观察到,另一种名为Pten的肿瘤抑制因子的缺失加速了这一过程。在这一阶段,致癌基因Myc可以驱动这些中间干样细胞形成SCLC型肿瘤。这项研究进一步支持了寻找靶向Myc蛋白疗法的努力,Myc蛋白与多种癌症有牵连。研究人员现在计划利用他们的新小鼠模型进一步探索腺癌-SCLC的转变,例如详细研究免疫系统如何正常应对这种转变。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1420151.htm手机版:https://m.cnbeta.com.tw/view/1420151.htm

封面图片

施一公团队揭示人源IgM-B细胞受体三维结构

施一公团队揭示人源IgM-B细胞受体三维结构8月19日,西湖大学施一公团队在《科学》上发表了题为《人源IgMB细胞受体的冷冻电镜结构》的研究论文。该论文首次报道了人源IgM同种型B细胞受体(IgM-BCR)的高分辨率三维结构,揭示了膜结合的IgM(mIgM)与Igα和Igβ异源二聚体复合物组装的分子机制,从而回答了B细胞受体如何组装这一重要科学问题,同时也为基于B细胞受体的免疫疗法提供了关键的结构基础。B细胞的“生命周期”概略示意图施一公团队供图B细胞也叫B淋巴细胞,是适应性免疫系统的重要组成部分。它在抗原刺激下可分化为浆细胞和记忆B细胞:浆细胞可合成和分泌抗体,是人体的免疫屏障之一;记忆B细胞则可以“记录”下感染信息,并在体内长期存在,以备不时之需。B细胞需要抗原与B细胞受体(BCR)的结合,才能进行增殖和分化,产生浆细胞和记忆细胞。这就好比,如果B细胞要组织一场免疫战斗,入侵的抗原是敌人,B细胞受体(BCR)则是探知敌人虚实的先锋。早在1990年,德国马普所的MichaelReth实验室就鉴定发表了BCR的组分,在之后的三十多年中,人们对BCR胞外区如何识别各种抗原并激活B细胞信号通路进行了深入的研究。BCR由膜结合的免疫球蛋白(mIg)和Igα/Igβ异二聚体组成。其中mIg负责与抗原结合,Igα/Igβ参与信号传递。抗原结合以后,BCR在细胞膜表面寡聚化,Igα和Igβ被Lyn激酶磷酸化,之后激活下游信号通路。BCR被认为是治疗B细胞恶性肿瘤的重要治疗靶点。例如,Polatuzumabvedotin是一种抗体偶联药物,该药物可以结合BCR中的Igβ组分,释放偶联的毒素分子,对B淋巴瘤细胞进行精准杀伤。尽管BCR十分重要,但科学家一直未能看清其结构。一旦获知BCR的结构信息,对于理解B细胞活化以及针对该复合物进行抗体药物的开发,将具有很高的潜在价值。BCR根据mIg类型的不同,可以分为五种类型,即IgM、IgD、IgG、IgA和IgE。此次施一公团队的研究对象,正是其中的IgM型。实验过程中,他们首先将IgM-BCR的四个组分的cDNA进行密码子优化并克隆到表达载体上,接着通过共表达内质网潴留蛋白pERp1促进IgM二硫键的形成,帮助其正确折叠。之后,在蛋白纯化时加入抗体偶联药物Polatuzumab的Fab片段,最后通过冷冻电镜解析了第一个人源IgM同种型B细胞受体复合物3.3埃(1埃等于0.1纳米)的高分辨率结构。该IgM-BCR复合物结构包含一个mIgM和一个Igα/Igβ,它们以1:1的化学计量比非共价结合。在Igβ的上方,观察到了Polatuzumab的Fab片段的电子密度,证实了Polatuzumab结合在Igβ氨基末端的柔性区域。在IgM-BCR的胞外区域,重链的胞外域与Igα/Igβ的胞外域紧密堆叠。在近膜区域,两条重链中的一条通过连接肽(linker)穿过由Igα/Igβ包围的中空结构。在跨膜区域,mIgM和Igα/Igβ的跨膜螺旋(TM)形成一个四螺旋束,通过跨膜螺旋之间的氢键来稳定构象。这样的结构特征暗示了mIgM和Igα/Igβ在细胞内通过共折叠的方式形成复合物。施一公团队通过体外pull-down和体内免疫共沉淀(co-IP)实验,验证了IgM-BCR的组分通过共折叠的方式在细胞...PC版:https://www.cnbeta.com/articles/soft/1306497.htm手机版:https://m.cnbeta.com/view/1306497.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人