细胞是如何自我凋亡的?科学家在原子层面上解读了确切的机制

细胞是如何自我凋亡的?科学家在原子层面上解读了确切的机制细胞的自我淘汰是所有生物体的一个重要过程。当细胞受损或被病毒或细菌感染时,它们会启动一个内部"自毁"程序。这一重要机制抵御了肿瘤的潜在增长,并防止了有害病原体在整个身体的传播。直到最近,人们还认为细胞只是在其生命的最后时刻爆裂和死亡。现在,巴塞尔大学生物中心、洛桑大学和苏黎世联邦理工学院生物系统科学与工程系(D-BSSE)的研究人员已经对细胞死亡的最后一步有了新的认识。在科学杂志《自然》中,他们描述了一种名为ninjurin-1的蛋白质如何组装成丝状物,像拉链一样发挥作用并打开细胞膜,从而导致细胞的解体。这一新的见解是了解细胞死亡的一个重要里程碑。蛋白质作为细胞膜的一个断裂点各种信号,如细菌成分触发了细胞死亡机制。在这个过程的最后阶段,细胞的保护膜被微小的孔洞破坏,这些孔洞允许离子流入细胞。巴塞尔大学生物中心(Biozentrum)的研究小组负责人塞巴斯蒂安-希勒(SebastianHiller)教授解释说:"通常的理解是,细胞随后膨胀,直到最后因渗透压增加而爆裂。我们现在正在解决细胞如何真正破裂的问题。蛋白质ninjurin-1不是像气球一样爆裂,而是在细胞膜上提供了一个断裂点,导致特定部位的破裂。"在其生命的最后阶段,细胞并不是简单地爆裂。相反,一种特定的蛋白质作为细胞膜破裂的突破点。SNI博士生莫里斯-德根(巴塞尔大学生物中心)解释了这一机制是如何运作的。利用高灵敏度显微镜和核磁共振光谱等先进技术,科学家们已经能够阐明ninjurin-1在单个原子水平上诱发膜破裂的机制。Ninjurin-1是一种嵌入细胞膜的小蛋白质。"收到凋亡命令后,两个ninjurin-1蛋白最初聚集在一起,并将一个楔子打入膜中,"该研究的第一作者、瑞士纳米科学研究所博士学院的博士生MorrisDegen解释说。"大型病变和孔洞是由许多进一步的蛋白质附着在最初的楔子上形成的。通过这种方式,细胞膜被一块一块地劈开,直到细胞完全解体"。然后,细胞碎片被人体自身的清洁服务所清除。"很明显,没有ninjurin-1,细胞就不会破裂。由于离子的涌入,它们确实在一定程度上膨胀,但膜的破裂取决于这种蛋白质的功能,"希勒补充说。"教科书中关于细胞死亡的章节将因这些美丽的结构见解而得到扩展。"对细胞死亡的更深入了解将有助于寻找新的药物目标。治疗癌症的干预措施是可以想象的,因为一些肿瘤细胞会逃避程序性细胞死亡。此外,在神经退行性疾病(如帕金森病)或危及生命的疾病(如败血症)中观察到的细胞过早死亡的情况下,干预这一过程的药物是一种潜在的治疗选择。...PC版:https://www.cnbeta.com.tw/articles/soft/1363381.htm手机版:https://m.cnbeta.com.tw/view/1363381.htm

相关推荐

封面图片

新研究揭示钙在身体清除死亡细胞过程中的关键作用

新研究揭示钙在身体清除死亡细胞过程中的关键作用由日本京都大学细胞-材料综合科学研究所(iCeMS)科学家共同领导的研究小组揭示了垂死细胞如何激活一种蛋白质的机制,这种蛋白质会触发免疫细胞发出"吃我吧"的信号,以清理细胞碎片。这些发现最近发表在《自然-通讯》(NatureCommunications)杂志上。这种蛋白质名为Xkr4,是细胞膜中的Xkr家族蛋白质之一。Xkr4能将磷脂磷脂酰丝氨酸从细胞膜内部(通常位于细胞膜内部)扰乱到细胞膜外部。磷脂酰丝氨酸转移到细胞膜外侧是细胞即将死亡的信号,也是吸引吞噬细胞吞噬碎片的信号。细胞外的钙会进入scramblase跨膜区域的一个口袋,引发scramblase的激活。这使得细胞表面的磷脂酰丝氨酸(PS)暴露出来,成为清除无用细胞的独特标记。图片来源:MindyTakamiya/KyotoUniversityiCeMSXkr4的激活过程研究人员之前发现,要成为磷脂酰丝氨酸的扰乱酶,Xkr4的C端胞质尾部必须先被裂解,与另一个Xkr4形成二聚体,并暴露出一个结合位点。然后,这个结合位点与另一个名为XRCC4的蛋白质片段相连接。然而,在实验环境中,XRCC4与Xkr4的结合本身并不足以激活Xkr4。这表明还需要其他成分。钙离子的作用日本的研究小组发现,钙离子是激活Xkr4的必要条件。细胞环境外带正电荷的钙离子与Xkr4蛋白质两个"螺旋"上带负电荷的三个氨基酸结合。这种结合使Xkr4从中间状态变为完全激活状态。iCeMS生物化学家JunSuzuki解释说:"我们发现,细胞外钙起到了Xkr4跨膜螺旋的分子粘合剂的作用,激活了Xkr4。"钙的意外作用和未来研究令人惊讶的是,众所周知细胞外钙参与调节细胞内外环境中蛋白质的活性,但细胞膜本身却不参与调节。铃木说:"我们意外地发现,细胞外钙渗入蛋白质的跨膜区域,连接两个跨膜螺旋。"这项研究还表明,钙离子对激活Xkr蛋白家族的其他成员,特别是Xkr8和Xkr9可能很重要,这有助于阐明这些和其他扰乱酶蛋白的作用机制。研究小组下一步将研究Xkr4在神经细胞中的功能,并探索它们在大脑中的作用。参考文献PanpanZhang、MasahiroMaruoka、RyoSuzuki、HikaruKatani、YuDou、DanielM.Packwood、HidetakaKosako、MotomuTanaka和JunSuzuki于2023年9月11日在《自然-通讯》上发表的论文:"细胞外钙作为跨膜螺旋的分子粘合剂激活扰乱酶Xkr4"DOI:10.1038/s41467-023-40934-2编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1402173.htm手机版:https://m.cnbeta.com.tw/view/1402173.htm

封面图片

揭开细胞动力源的秘密:科学家们揭开了线粒体的蛋白质图谱

揭开细胞动力源的秘密:科学家们揭开了线粒体的蛋白质图谱线粒体是细胞的"动力室",在生物体的能量生产中发挥着关键作用,并参与各种代谢和信号过程。来自波恩大学医院和弗莱堡大学的研究人员现在已经对线粒体内的蛋白质组织有了系统的了解。线粒体的蛋白质图谱为进一步探索这些细胞动力源的功能奠定了重要基础,并对疾病的理解产生了影响。这项新研究最近发表在著名的《自然》杂志上。线粒体是细胞的重要组成部分,被一层双膜所包围,将它们与细胞的其他部分分开。它们产生维持这些活动所需的大部分能量。除了能量生产,线粒体在新陈代谢和信号传递中发挥着关键作用,作为炎症过程和程序性细胞死亡的表面。从线粒体进入门移除被捕蛋白质的质量控制机制的模型。资料来源:Schulte等人,2023年《自然》杂志线粒体的缺陷导致了许多疾病,尤其是神经系统的疾病。因此,对线粒体过程的分子理解对基础医学研究具有最重要的意义。细胞中的分子工作者通常是蛋白质。线粒体可以包含大约1000个或更多不同的蛋白质。为了执行功能,这些分子中的几个经常一起工作,形成一个蛋白质机器,也称为蛋白质复合物。蛋白质还在分子过程的执行和调节中相互作用。然而,人们对线粒体蛋白质在这种复合体中的组织结构知之甚少。英国广播公司的托马斯-贝克尔教授和法比安-登-布拉夫博士的研究小组与弗莱堡大学的贝恩德-法克勒教授、乌韦-舒尔特博士和尼古拉斯-普凡纳教授的研究小组一起,创建了一个蛋白质复合物中蛋白质组织的高分辨率图像,称为MitCOM。这涉及一种被称为复合体分析的特殊方法,以前所未有的分辨率记录单个蛋白质的指纹。MitCOM揭示了来自面包酵母的90%以上的线粒体蛋白在蛋白质复合物中的组织。这使得新的蛋白质-蛋白质相互作用和蛋白质复合体的鉴定成为可能--这对进一步的研究非常重要。UKB的研究人员与合作研究中心1218"线粒体对细胞功能的调节"项目合作,展示了这一数据集如何被用来阐明新的过程。线粒体从细胞的液体部分(称为细胞膜)输入99%的蛋白质。在这个过程中,一种被称为TOM复合体的机制使这些蛋白质通过膜被吸收到线粒体中。然而,当蛋白质在运输过程中被卡住时,它们是如何从TOM复合体中移除的,这一点在很大程度上还不清楚。为了阐明这一点,Becker教授和denBrave博士领导的团队使用了MitCOM数据集的信息。结果表明,非输入的蛋白质被专门标记为细胞降解。博士生ArushiGupta的研究进一步揭示了这些被标记的蛋白质随后被定向降解的途径。了解这些过程很重要,因为蛋白质输入的缺陷可能导致细胞损伤和神经系统疾病。"我们研究中的例子证明了MitCOM数据集在阐明新机制和途径方面的巨大潜力。因此,这个蛋白质地图代表了进一步研究的重要信息来源,它将帮助我们了解细胞动力源的功能和起源,"UKB生物化学和分子生物学研究所所长贝克尔教授说。...PC版:https://www.cnbeta.com.tw/articles/soft/1348957.htm手机版:https://m.cnbeta.com.tw/view/1348957.htm

封面图片

约翰霍普金斯大学的科学家们设计出能打破对称的合成细胞

约翰霍普金斯大学的科学家们设计出能打破对称的合成细胞艺术家们利用显微镜图像和图形渲染,展示了一个能够感知定向化学线索并自我组织响应的最小合成细胞。图片来源:约翰-霍普金斯大学医学院井上实验室,由ShivaRazavi和TurhanPathan创作,经编辑了解对称性破坏细胞运动之前的一个步骤是打破对称,当细胞分子最初对称排列时,通常在受到刺激后重组为不对称的模式或形状。这类似于迁徙的鸟类在对阳光或地标等环境指南针做出反应时转变为新的队形,从而打破对称。在微观层面上,免疫细胞会感知集中在感染部位的化学信号,并打破对称,穿过血管壁到达受感染的组织。当细胞打破对称性时,它们会转变为极化和不对称结构,为向目标移动做好准备。"对称性破缺的概念对生命至关重要,影响着生物学、物理学和宇宙学等多个领域,"在约翰-霍普金斯大学攻读研究生时领导这项研究的希瓦-拉扎维(ShivaRazavi)博士说,他在约翰霍普金斯大学攻读研究生时领导了这项研究,现在是麻省理工学院的博士后研究员。"了解对称性破缺是解开生物学基本原理和发现如何利用这些信息来设计治疗方法的关键。"长期以来,人们一直认为找到在合成细胞中模仿和控制对称性破坏的方法对于了解细胞如何检测其化学环境并重新排列其化学轮廓和形状至关重要。在这项研究中,科学家们创造了一个带有双层膜的巨大囊泡--一个由磷脂、纯化蛋白质、盐和提供能量的ATP组成的裸体简化合成细胞或原细胞。原细胞呈球形,因此被昵称为"泡泡"。在实验中,科学家们成功地设计出了具有化学感应能力的原细胞,它能促使细胞打破对称性,从一个近乎完美的球体变成一个凹凸不平的形状。研究人员说,该系统专门设计用于模仿免疫反应的第一步,能够根据中性粒细胞感知到的周围蛋白质发出攻击病菌的信号。拉扎维说:"我们的研究展示了类细胞实体如何能够感知外部化学线索的方向,模拟生物体内的条件。通过从零开始构建类细胞结构,我们可以更好地识别和理解细胞以最简化的形式打破对称性所需的基本组成部分。"给药领域的未来应用科学家们说,有朝一日,化学传感可用于体内靶向给药。约翰-霍普金斯大学医学院细胞生物学教授、细胞动力学中心主任、资深作者井上隆成(TakanariInoue)博士说:"我们的想法是,可以把任何你想要的东西--蛋白质、RNA、DNA、染料或小分子--打包到这些气泡中,利用化学传感告诉细胞该去哪里,然后让细胞在预定目标附近破裂,这样药物就能被释放出来。"为了激活囊泡的化学感应能力,研究人员在合成细胞中植入了两种作为分子开关的蛋白质--FKBP和FRB。蛋白质FKBP被置于细胞中心,而FRB则被置于细胞膜上。当科学家们在气泡细胞外引入一种化学物质--雷帕霉素时,FKBP就会移动到细胞膜上与FRB结合,从而引发一种叫做肌动蛋白聚合的过程,也就是合成细胞骨架的重组。在原细胞内部,化学反应产生了由肌动蛋白组成的杆状结构,对细胞膜施加压力,使其弯曲。研究人员使用了一种名为共聚焦显微镜的专门快速三维成像技术来记录原细胞的化学感应能力;他们必须以每15到30秒一帧的速度快速记录图像,因为原细胞会对化学信号做出快速反应。下一步,研究人员的目标是让这些合成细胞具备向所需目标移动的能力。最终,研究人员希望设计出的合成细胞能在靶向药物输送、环境传感以及其他需要精确移动和对刺激做出反应的领域中发挥重要的潜在应用。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1434518.htm手机版:https://m.cnbeta.com.tw/view/1434518.htm

封面图片

MIT化学家们发现一种可改变形状的受体如何影响细胞生长

MIT化学家们发现一种可改变形状的受体如何影响细胞生长在细胞表面发现的受体与激素、蛋白质和其他分子结合,帮助细胞对其环境做出反应。麻省理工学院(MIT)的化学家们现在发现了这些受体中的一个在与目标结合时如何改变其形状,以及这些变化如何导致细胞的生长和增殖。这种受体被称为表皮生长因子受体(EGFR),在许多类型的癌症中被过度表达。事实上,它是几种癌症药物的目标。尽管这些药物一开始往往效果很好,但肿瘤会对它们产生抗药性。麻省理工学院化学系副教授GabrielaSchlau-Cohen说,更好地了解这些受体的机制可能有助于研究人员设计出能够规避这种抗性的药物。她说:“思考针对表皮生长因子受体的更普遍的机制是一个令人兴奋的新方向,并给你一个新的途径来思考可能的疗法,这些疗法可能不那么容易进化出抗药性。”Schlau-Cohen和Pfizer-Laubach化学职业发展助理教授张斌(音译)是这项研究的资深作者,该研究最近发表在《自然通讯》杂志上。论文的主要作者是麻省理工学院的研究生ShwethaSrinivasan和前麻省理工学院博士后RajuRegmi。EGFR是帮助细胞生长调节的许多受体之一。它存在于大多数类型的哺乳动物上皮细胞上,这些细胞排列在身体表面和器官上,除了EGF之外,还能对几种类型的生长因子做出反应。一些类型的癌症,特别是肺癌和胶质母细胞瘤,过度表达EGFR,这可能导致不受控制的生长。像大多数细胞受体一样,EGFR跨越了细胞膜。受体的细胞外区域与其目标分子(也称为配体)相互作用;跨膜部分嵌入膜内;而细胞内部分则与控制生长途径的细胞机器相互作用。受体的细胞外部分已被详细分析,但跨膜和细胞内部分一直难以研究,因为它们更无序,不能被结晶化。大约五年前,Schlau-Cohen开始尝试进一步了解这些鲜为人知的结构。她的研究小组将这些蛋白质嵌入到一种特殊的自组装膜中,这种膜被称为纳米盘,模仿细胞膜。然后,她使用单分子荧光共振能量转移(FRET)来研究当受体与EGF结合时其构象如何变化。FRET通常用于测量两个荧光分子之间的微小距离。研究人员用两种不同的荧光团标记了纳米盘膜和蛋白质的细胞内尾巴末端,这使得他们能够在各种情况下测量蛋白质尾巴和细胞膜之间的距离。令他们惊讶的是,科学家们发现,EGF的结合导致了受体构象的重大变化。大多数受体信号的模型涉及多个跨膜螺旋的相互作用,以带来大规模的构象变化,但EGF受体在膜内只有一个螺旋段,似乎在不与其他受体分子相互作用的情况下发生了这种变化。Schlau-Cohen说:“单一的α螺旋能够传递如此大的构象重排的想法确实让我们感到惊讶。”为了进一步了解这种形状变化将如何影响受体的功能,Schlau-Cohen的实验室与张斌合作,后者的实验室对分子相互作用进行计算机模拟。这种建模被称为分子动力学,可以模拟一个分子系统如何随时间变化。该模型显示,当受体与EGF结合时,受体的细胞外部分垂直竖立,而当受体未被结合时,它平躺在细胞膜上。类似于铰链的关闭,当受体平放时...PC版:https://www.cnbeta.com/articles/soft/1311673.htm手机版:https://m.cnbeta.com/view/1311673.htm

封面图片

科学家发现细菌细胞壁的新致命弱点

科学家发现细菌细胞壁的新致命弱点新月柄杆菌是一种新月形二形细菌,是研究细菌细胞周期调控、细胞分化和形态发生的主要模式生物之一。使用DNA-PAINT技术观察细胞,染色体DNA被染成蓝色,细胞膜被染成红色。图片来源:马克斯-普朗克陆地微生物研究所/埃尔南德斯-塔马约在进化过程中,细胞发展出了多种策略来加强其包膜以抵御内部渗透压,从而使它们能够在各种不同的环境中生长。大多数细菌种类都会在细胞质膜周围合成半刚性细胞壁,其主要成分肽聚糖会形成一个致密的网状结构,将细胞包裹起来。细胞壁除了起保护作用外,还能形成特定的细胞形状,如球形、棒状或螺旋形,从而有利于运动、表面定植和致病。细胞壁的存在也带来了挑战:细胞必须不断重塑细胞壁才能生长和分裂。为此,细胞必须小心翼翼地撕裂细胞壁,使其扩张和变化,同时迅速用新材料修补缝隙,防止细胞壁坍塌。这种细胞壁重塑过程包括裂解酶(又称自溶酶)对键的裂解,以及随后肽聚糖合成酶对新细胞壁材料的插入。这两组相互对抗的蛋白质的活动必须密切协调,以防止肽聚糖层出现薄弱点,导致细胞溶解和死亡。马克斯-普朗克陆地微生物学研究所研究员、马尔堡大学微生物学教授马丁-坦比希勒领导的研究小组开始研究自溶机制的组成和功能。他们的研究重点是淡水环境中的新月柄杆菌,这种细菌被广泛用作研究细菌基本细胞过程的模式生物。Thanbichler认为,研究自溶蛋白的功能是一项具有挑战性的任务。"虽然我们对合成机器有很多了解,但自溶蛋白被证明是一个难以攻克的难题"。Thanbichler团队的博士后研究员MariaBillini补充说:"细菌通常含有多种类型的自溶蛋白,它们来自不同的酶家族,具有不同的靶标。这意味着这些蛋白质具有高度冗余性,删除单个自溶蛋白基因往往对细胞形态和生长影响甚微。"通过共免共沉淀筛选和体外蛋白质-蛋白质相互作用试验对潜在的自溶蛋白调节因子进行分析后发现,一种名为DipM的因子在细菌细胞壁重塑过程中发挥着关键作用。这种关键的调节因子是一种可溶性的周质蛋白,竟然与几类自溶蛋白以及一种细胞分裂因子相互作用,显示出这种调节因子以前未知的杂交性。DipM能够刺激两种活性和折叠方式完全不同的肽聚糖分解酶的活性,这使它成为第一个被发现的能够控制两类自溶酶的调节因子。值得注意的是,研究结果还表明,DipM使用单一界面与其各种靶标相互作用。这项研究的第一作者、博士生阿德里安-伊斯基耶多-马丁内斯(AdrianIzquierdoMartinez)说:"破坏DipM会导致细胞壁重塑和分裂过程的各个环节失去调控,最终导致细胞死亡。"因此,它作为自溶蛋白活性协调者的适当功能对于新月柄杆菌正常的细胞形状维持和细胞分裂至关重要。"对DipM的全面表征揭示了一个新颖的相互作用网络,包括一个自我强化环,它将溶解性转糖基酶和可能的其他自溶蛋白与新月柄杆菌细胞分裂装置的核心连接起来,也很可能与其他细菌的细胞分裂装置连接起来。因此,DipM协调着一个复杂的自溶蛋白网络,其拓扑结构与之前研究的自溶蛋白系统大不相同。马丁-坦比希勒(MartinThanbichler)指出:"这种多酶调节器的功能失常会同时影响多个与细胞壁相关的过程,对它们的研究不仅有助于我们了解细胞壁如何对细胞或环境的变化做出反应。它还有助于开发新的治疗策略,通过同时破坏几种自溶途径来对付细菌"。...PC版:https://www.cnbeta.com.tw/articles/soft/1376317.htm手机版:https://m.cnbeta.com.tw/view/1376317.htm

封面图片

科学家发现癌细胞自毁新方式

科学家发现癌细胞自毁新方式化疗会杀死癌细胞,但这些细胞的死亡方式似乎与之前理解的不同。荷兰癌症研究所研究人员发现了一种全新的癌细胞死亡方式,由SLFN11基因起主导作用。许多癌症治疗都会损害细胞DNA。在遭受太多不可挽回的损害后,细胞可能会自行死亡。研究人员发现,如果DNA受损,基因SLFN11会关闭细胞的蛋白质工厂——核糖体。这会给这些细胞带来巨大压力,从而导致它们死亡。相关研究结果发表在17日出版的《科学》杂志上。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人