科学家发现细胞如何修复促进长寿的“循环系统”

科学家发现细胞如何修复促进长寿的“循环系统”研究人员首次描述了一种细胞修复受损溶酶体的途径,溶酶体是通过回收细胞垃圾来促进长寿的结构。这一发现是理解和治疗由溶酶体泄漏驱动的年龄相关疾病的重要一步。该研究由匹兹堡大学的科学家进行,于9月7日发表在《自然》杂志上。研究主要作者谭晓军(音译)博士说:“溶酶体损伤是衰老和许多疾病的标志,特别是神经退行性疾病,如阿尔茨海默病,”他是匹兹堡大学医学院细胞生物学的助理教授,也是衰老研究所的成员,该研究所是匹兹堡大学和匹兹堡大学医学中心(UPMC)的合作伙伴。“我们的研究确定了一系列的步骤,我们认为这是溶酶体修复的普遍机制,我们将其命名为PITT途径,以向匹兹堡大学致敬。”作为细胞的回收系统,溶酶体含有强大的消化酶,可降解分子废物。这些内容物被隔离开来,以免破坏细胞的其他部分,这层膜的作用就像围绕着危险废物设施的链环栅栏。即使这个围栏可能发生断裂,健康的细胞也会迅速修复损害。为了进一步了解这一修复过程,谭晓军与资深作者TorenFinkel(医学博士)合作。首先,谭晓军通过实验破坏了实验室生长的细胞中的溶酶体,并测量了到达现场的蛋白质。他发现,一种名为PI4K2A的酶在几分钟内积聚在受损的溶酶体上,并产生高水平的信号分子PtdIns4P。“PtdIns4P就像一面红旗。它告诉细胞,‘嘿,我们这里有一个问题,’”谭晓军说。“这个警报系统然后‘招募’了另一组叫做ORP的蛋白质。”谭晓军解释说,ORP蛋白的功能就像系绳。该蛋白的一端与溶酶体上的PtdIns4P“红旗”结合,另一端与内质网结合,内质网是参与蛋白质和脂质合成的细胞结构。“内质网像一条毯子一样包裹着溶酶体,”Finkel补充说。“通常情况下,内质网和溶酶体几乎不互相接触,但是一旦溶酶体被破坏,我们发现它们在‘拥抱’。”通过这种“拥抱”,胆固醇和一种叫做磷脂酰丝氨酸的脂质被穿梭到溶酶体中,在那里它们帮助修补“膜栅栏”上的孔。磷脂酰丝氨酸还激活了一种叫做ATG2的蛋白质。它就像一座桥梁,将其他脂质转移到溶酶体,这是新描述的PITT--或磷脂酰肌醇启动的膜拴住和脂质运输--途径中最后的膜修复步骤。Finkel说:“这个系统的美妙之处在于,PITT途径的所有组成部分都是已知存在的,但它们不知道以这种顺序或为溶酶体修复的功能进行互动。我相信这些发现将对正常衰老和与年龄有关的疾病产生许多影响。”科学家们怀疑,在健康人中,溶酶体膜的小破损会通过PITT途径迅速修复。然而,如果损伤过于广泛或修复途径受到损害--由于年龄或疾病--泄漏的溶酶体就会累积。在阿尔茨海默病中,tau纤维从受损的溶酶体中漏出是疾病进展的关键步骤。当谭晓军删除了编码该途径中的第一个酶PI4K2A的基因时,他发现tau纤维的扩散急剧增加。这表明,PITT途径的缺陷可能有助于阿尔茨海默病的进展。在未来的工作中,科学家们计划开发小鼠模型,以了解PITT途径是否能保护小鼠不患阿尔茨海默病。PC版:https://www.cnbeta.com/articles/soft/1313767.htm手机版:https://m.cnbeta.com/view/1313767.htm

相关推荐

封面图片

开启健康长寿之门:科学家在细胞蛋白质中发现抗衰老功能

开启健康长寿之门:科学家在细胞蛋白质中发现抗衰老功能线粒体及其自身的DNA在细胞内产生能量,为生物功能提供动力,但这一过程中产生的有毒副产品会加速细胞衰老。Zuryn博士说:"在压力条件下,当线粒体DNA受损时,ATSF-1蛋白会优先进行修复,从而促进细胞健康和长寿。"他将这种关系比喻为需要进站的赛车。他说:"当线粒体需要修复时,ATSF-1就会发出细胞需要加油站的信号。"用红色和绿色荧光蛋白装饰神经系统中线粒体的活秀丽隐杆线虫"我们在秀丽隐杆线虫体内研究了ATFS-1,发现增强ATFS-1的功能可以促进细胞健康,这意味着这些蠕虫会变得更加灵活,寿命更长。它们并没有活得更长,但随着年龄的增长,它们变得更健康了。线粒体功能障碍是许多人类疾病的核心,包括痴呆症和帕金森氏症等常见的与年龄有关的疾病。""我们的发现可能会对健康老龄化和遗传性线粒体疾病患者产生令人兴奋的影响,了解细胞如何促进修复是确定预防线粒体损伤的可能干预措施的重要一步。我们的目标是通过了解恶化的线粒体是如何促成这一过程的,来延长衰老过程中通常会衰退的组织和器官功能。"展望未来,戴博士说:"我们最终可能会设计出干预措施,让线粒体DNA在更长的时间内保持健康,从而提高我们的生活质量。"这项研究发表在科学杂志《自然-细胞生物学》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1378289.htm手机版:https://m.cnbeta.com.tw/view/1378289.htm

封面图片

细胞回收背后的通用途径 或为我们揭示对抗衰老的新线索

细胞回收背后的通用途径或为我们揭示对抗衰老的新线索溶酶体是一种微小的结构,它可以分解并清除分子废物,以保持细胞的年轻与新鲜,因而这套机制有时也被称作细胞回收系统。此前已有许多研究揭示了它与衰老相关的疾病有牵连,例如癌症、阿尔兹海默病、以及帕金森氏症。但若能对这些细胞器的自我修复方式产生新的认知,或为我们指明一条阻止相关疾病发展的全新道路。荧光显微图像-绿色的内质网网络,包裹着红色的受损溶酶体(来自:JayXiaojunTan)研究一作、来自匹兹堡大学医学院细胞生物学系的谭小军(音译)表示:溶酶体损伤是衰老和许多疾病的标志,尤其是阿尔茨海默病等神经退行性疾病。我们的新研究已确定一系列步骤,并且认为它是溶酶体修复的普遍机制。此外为了向匹兹堡大学致敬,我们最终决定将其命名为‘PITT’途径。研究配图1-识别PI4K2A介导的PtdIns4P信号在快速溶酶体修复中的作用溶酶体功能的关键,在于一种膜——其重要目的是容纳它们用来吞噬分子废物的强大消化酶。通过将这些酶隔离开,细胞膜可让细胞的其余部分保持健康和完整。该膜可以迅速渗漏,但健康细胞能够迅速堵塞缝隙、并使溶酶体恢复全部功能。而在这项新研究中,该校团队试图通过观察实验室培养细胞中受损的溶酶体,来了解支持这一修复过程的过程。研究配图2-PtdIns4P驱动ORP栓系的ER-溶酶体接触,以实现快速膜修复。科学家们看到有蛋白质会落在受伤的细胞器上,且其中一个尤其引人注目——它就是能够迅速到达、并产生大量被称作PtdIns4P信号分子的PI4K2A酶。Tan表示——PtdIns4P就像一面红旗,它会告知这里存在问题,然后警报系统就会招募另一组被称作ORP的蛋白质。ORP能够像系绳一样工作,其一端连接到溶酶体PtdIns4P、另一端则连接到称为内质网的细胞结构。这种结构在蛋白质和脂质的合成中发挥了作用,后续研究发现它会产生胆固醇(cholesterol)、以及一种被称作磷脂酰丝氨酸(phosphatidylserine)的脂质。研究配图3-通过ER到溶酶体的磷脂酰丝氨酸,转移介导快速溶酶体修复。由于能够修补膜上的孔洞,上述产物也被认为是整个溶酶体修复过程的关键。此外研究人员发现,磷脂酰丝氨酸可以激活另一种称作ATG2的蛋白质。该蛋白质有助于在修复过程的最后一步,将脂质转运至溶酶体。后续实验中,研究人员尝试剔除编码PI4K2A酶的基因,结果发现与阿尔茨海默病相关的tau原纤维会自由生长。科学家们认为,在年轻和健康人群中,溶酶体可通过这一途径加以快速修复,但衰老和疾病会损害其功能——导致渗漏的溶酶体积累、进而加速衰老和某些疾病的发作。研究配图4-激活脂质转运,介导直接、快速的溶酶体修复。下一步,科学家们打算探索如何利用PITT途径,来保护实验小鼠免受阿尔兹海默病的影响。研究资深作者TorenFinkel解释称:这套机制的美妙之处,在于已知的PITT通路的所有成分都存在,但不清楚它们谁在这个序列中相互作用、或发挥溶酶...PC版:https://www.cnbeta.com/articles/soft/1314097.htm手机版:https://m.cnbeta.com/view/1314097.htm

封面图片

剑桥科学家发现免疫系统的"新规则" 调节性T细胞能穿越人体修复组织

剑桥科学家发现免疫系统的"新规则"调节性T细胞能穿越人体修复组织剑桥大学的研究人员发现,调节性T细胞能穿越人体修复组织,这为各种疾病的靶向治疗开辟了道路。调节性T细胞是白细胞的一种,它们组成一个庞大的群体,在全身不断循环,寻找并修复受损组织。这推翻了传统的观点,即调节性T细胞是作为局限于身体特定部位的多个专业群体而存在的。这一发现对许多不同疾病的治疗都有意义--因为几乎所有疾病和损伤都会触发人体的免疫系统。目前的抗炎药物治疗的是整个身体,而不仅仅是需要治疗的部位。研究人员说,他们的发现意味着有可能关闭身体的免疫反应,修复身体任何特定部位的损伤,而不影响身体的其他部位。这意味着可以使用更高剂量、更有针对性的药物来治疗疾病,而且有可能迅速见效。该研究的资深作者阿德里安-利斯顿(AdrianListon)教授和詹姆斯-杜利(JamesDooley)博士利用显微镜追踪抗炎调节性T细胞在组织中的流动。图片来源:路易莎-伍德/巴伯拉罕研究所统一治疗力量"我们发现了免疫系统的新规则。这支'统一的治疗大军'无所不能--修复受伤的肌肉,让脂肪细胞对胰岛素做出更好的反应,让毛囊重新生长……"论文的资深作者、剑桥大学病理学系阿德里安-利斯顿(AdrianListon)教授说:"想到我们可以用它来治疗如此广泛的疾病,这真是太棒了:它有可能被用于治疗几乎所有的疾病。"为了得出这一发现,研究人员分析了小鼠体内48个不同组织中的调节性T细胞。结果发现,这些细胞并不是特化的或静止的,而是在体内移动到需要它们的地方。研究结果发表在今天的《免疫》(Immunity)杂志上。调节性T细胞可以通过血液从一个组织迁移到另一个组织。这些细胞在体内游走仅需几分钟,一旦进入组织,速度就会减慢,平均在组织内停留三周后才会离开。图片来源:EquinoxGraphics利斯顿说:"很难想象有哪种疾病、损伤或感染不涉及某种免疫反应,而我们的发现确实改变了我们控制这种反应的方式。既然我们知道这些调节性T细胞存在于人体的各个部位,原则上我们就可以开始针对单一器官进行免疫抑制和组织再生治疗,这与目前的治疗方法相比是一个巨大的进步,因为目前的治疗方法就像用大锤敲打身体一样。"研究人员利用他们已经设计出的一种药物,在小鼠身上证明了可以将调节性T细胞吸引到身体的特定部位,增加它们的数量,并激活它们来关闭免疫反应,促进一个器官或组织的愈合。利斯顿说:"通过提高人体目标区域调节性T细胞的数量,我们可以帮助人体更好地进行自我修复或管理免疫反应。"该研究的第一作者奥利弗-伯顿(OliverBurton)博士使用光谱细胞仪分析来自不同组织的抗炎调节性T细胞。图片来源:路易莎-伍德,巴布拉汉姆研究所他补充说:"在许多不同的疾病中,我们都希望关闭免疫反应,启动修复反应,例如多发性硬化症等自身免疫性疾病,甚至许多传染性疾病。"COVID-19等感染的大多数症状并非来自病毒本身,而是来自人体免疫系统对病毒的攻击。一旦病毒过了高峰期,调节性T细胞就应该关闭人体的免疫反应,但在某些人体内,这一过程并不十分有效,可能导致持续的问题。这项新发现意味着有可能使用一种药物来关闭病人肺部的免疫反应,同时让身体其他部位的免疫系统继续正常运作。另一个例子是,接受器官移植的人必须终生服用免疫抑制药物,以防止器官排斥反应,因为身体会对移植器官产生严重的免疫反应。但这使他们极易受到感染。这项新发现有助于设计新的药物,只关闭人体对移植器官的免疫反应,但保持身体其他部分正常工作,使病人能够过上正常的生活。大多数白细胞通过触发免疫反应来攻击体内的感染。与此相反,调节性T细胞就像一支"统一的治疗大军",其目的是在免疫反应完成任务后关闭免疫反应,并修复免疫反应造成的组织损伤。研究人员目前正在筹集资金,准备成立一家独立公司,目的是在未来几年内开展临床试验,在人体上测试他们的研究成果。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435737.htm手机版:https://m.cnbeta.com.tw/view/1435737.htm

封面图片

细胞是如何自我凋亡的?科学家在原子层面上解读了确切的机制

细胞是如何自我凋亡的?科学家在原子层面上解读了确切的机制细胞的自我淘汰是所有生物体的一个重要过程。当细胞受损或被病毒或细菌感染时,它们会启动一个内部"自毁"程序。这一重要机制抵御了肿瘤的潜在增长,并防止了有害病原体在整个身体的传播。直到最近,人们还认为细胞只是在其生命的最后时刻爆裂和死亡。现在,巴塞尔大学生物中心、洛桑大学和苏黎世联邦理工学院生物系统科学与工程系(D-BSSE)的研究人员已经对细胞死亡的最后一步有了新的认识。在科学杂志《自然》中,他们描述了一种名为ninjurin-1的蛋白质如何组装成丝状物,像拉链一样发挥作用并打开细胞膜,从而导致细胞的解体。这一新的见解是了解细胞死亡的一个重要里程碑。蛋白质作为细胞膜的一个断裂点各种信号,如细菌成分触发了细胞死亡机制。在这个过程的最后阶段,细胞的保护膜被微小的孔洞破坏,这些孔洞允许离子流入细胞。巴塞尔大学生物中心(Biozentrum)的研究小组负责人塞巴斯蒂安-希勒(SebastianHiller)教授解释说:"通常的理解是,细胞随后膨胀,直到最后因渗透压增加而爆裂。我们现在正在解决细胞如何真正破裂的问题。蛋白质ninjurin-1不是像气球一样爆裂,而是在细胞膜上提供了一个断裂点,导致特定部位的破裂。"在其生命的最后阶段,细胞并不是简单地爆裂。相反,一种特定的蛋白质作为细胞膜破裂的突破点。SNI博士生莫里斯-德根(巴塞尔大学生物中心)解释了这一机制是如何运作的。利用高灵敏度显微镜和核磁共振光谱等先进技术,科学家们已经能够阐明ninjurin-1在单个原子水平上诱发膜破裂的机制。Ninjurin-1是一种嵌入细胞膜的小蛋白质。"收到凋亡命令后,两个ninjurin-1蛋白最初聚集在一起,并将一个楔子打入膜中,"该研究的第一作者、瑞士纳米科学研究所博士学院的博士生MorrisDegen解释说。"大型病变和孔洞是由许多进一步的蛋白质附着在最初的楔子上形成的。通过这种方式,细胞膜被一块一块地劈开,直到细胞完全解体"。然后,细胞碎片被人体自身的清洁服务所清除。"很明显,没有ninjurin-1,细胞就不会破裂。由于离子的涌入,它们确实在一定程度上膨胀,但膜的破裂取决于这种蛋白质的功能,"希勒补充说。"教科书中关于细胞死亡的章节将因这些美丽的结构见解而得到扩展。"对细胞死亡的更深入了解将有助于寻找新的药物目标。治疗癌症的干预措施是可以想象的,因为一些肿瘤细胞会逃避程序性细胞死亡。此外,在神经退行性疾病(如帕金森病)或危及生命的疾病(如败血症)中观察到的细胞过早死亡的情况下,干预这一过程的药物是一种潜在的治疗选择。...PC版:https://www.cnbeta.com.tw/articles/soft/1363381.htm手机版:https://m.cnbeta.com.tw/view/1363381.htm

封面图片

科学家在小鼠体内发现关键蛋白质 有望彻底改变神经修复过程

科学家在小鼠体内发现关键蛋白质有望彻底改变神经修复过程索尔克研究所的研究人员发现,蛋白质Mitf是小鼠周围神经系统修复过程中的关键介质,这表明这是一个很有希望的新治疗靶点。在美国,每年有300多万人受到周围神经病变的影响,由于大脑和脊髓以外的神经受损,他们会感到疼痛和失去知觉。导致这种病症的原因有很多,包括糖尿病、外伤、遗传疾病和感染。索尔克研究所的科学家在小鼠身上发现了一项关于修复周围神经病变中受损神经的重大发现。他们发现,蛋白质Mitf能激活神经系统中特化的许旺细胞的修复功能。这一发现最近发表在《细胞报告》(CellReports)杂志上,它可能为旨在加强修复过程和有效治疗周围神经病变的创新疗法铺平道路。资深作者塞缪尔-普法夫(SamuelPfaff)教授说:"我们想知道,在急性创伤、遗传性疾病或退行性疾病等不同情况下,是什么机制控制着周围神经的损伤反应。我们发现,许旺细胞是神经中保护和支持神经元轴突的特殊细胞,它们进入修复状态的途径是由蛋白质Mitf介导的。"左起SamuelPfaff和LydiaDaboussi。资料来源:索尔克研究所外周神经系统由所有神经组成,这些神经从大脑和脊髓分支出来,为我们提供全身的感觉。外周神经中有许多细胞类型,但普法夫和他的团队重点研究的是神经元和许旺细胞(Schwanncell),前者在整个神经系统中传递信息,后者则保护健康的神经元并修复受损的神经元。考虑到由大脑和脊髓组成的中枢神经系统无法修复损伤,外周神经系统修复损伤的能力就显得尤为重要。然而,人们对这一壮举的机制仍然知之甚少。小鼠坐骨神经横截面。资料来源:索尔克研究所为了揭示许旺细胞是如何分化并开始修复周围神经损伤的,研究人员研究了夏科玛利牙病(CMT)小鼠模型,这是一种遗传性神经病。第一作者莉迪亚-达布西(LydiaDaboussi)曾是普法夫实验室的博士后研究员,现任加州大学洛杉矶分校助理教授。她表示:"我们的研究结果表明,Mitf开启的基因程序可以修复这些慢性疾病情况下造成的一些损伤,而当关闭这些程序时,疾病症状会变得更糟。"在患有CMT的小鼠身上,研究人员注意到,完成修复的许旺细胞核中含有高水平的Mitf--那里储存着如何成为许旺细胞以及如何进行修复的遗传指令。在研究Mitf和许旺细胞之间的这种关系时,他们发现Mitf在感知到神经元损伤之前一直在许旺细胞的细胞质中。然后,损伤促使Mitf从细胞的细胞质转移到细胞核,并在那里指导许旺细胞进行修复。为了验证Mitf在创建修复许旺细胞中的重要性,研究人员将Mitf完全移除。在创伤和CMT病例中,神经修复在缺少Mitf的情况下都会停止--这证明Mitf是外周神经修复和再生所必需的。达布西认为,Mitf就像一个灭火器。它一直存在于许旺细胞中,直到损伤发生时才被发现。而当损伤发生时,Mitf就会准备就绪,立即开启细胞的修复功能。最令人惊讶的是,Mitf竟然能在像CMT这样的慢性疾病中协调这些修复功能。索尔克大学本杰明-H-刘易斯讲座教授普法夫说:"利用许旺细胞修复程序在治疗慢性疾病方面具有巨大潜力。通过靶向治疗,我们有可能促使更多的许旺细胞修复周围神经损伤,并推动慢性病患者完成这些修复。此外,既然我们已经更好地掌握了修复机制,我们就可以看看是否也有可能启动脑干和脊髓的修复"。未来,研究人员希望更具体地研究糖尿病神经病变--最常见的周围神经病变。他们还希望探索加强这种修复途径的治疗方法,以创造更多的许旺细胞来修复损伤,无论损伤的来源是创伤、遗传还是长期发展。...PC版:https://www.cnbeta.com.tw/articles/soft/1401437.htm手机版:https://m.cnbeta.com.tw/view/1401437.htm

封面图片

科学家发现细菌细胞壁的新致命弱点

科学家发现细菌细胞壁的新致命弱点新月柄杆菌是一种新月形二形细菌,是研究细菌细胞周期调控、细胞分化和形态发生的主要模式生物之一。使用DNA-PAINT技术观察细胞,染色体DNA被染成蓝色,细胞膜被染成红色。图片来源:马克斯-普朗克陆地微生物研究所/埃尔南德斯-塔马约在进化过程中,细胞发展出了多种策略来加强其包膜以抵御内部渗透压,从而使它们能够在各种不同的环境中生长。大多数细菌种类都会在细胞质膜周围合成半刚性细胞壁,其主要成分肽聚糖会形成一个致密的网状结构,将细胞包裹起来。细胞壁除了起保护作用外,还能形成特定的细胞形状,如球形、棒状或螺旋形,从而有利于运动、表面定植和致病。细胞壁的存在也带来了挑战:细胞必须不断重塑细胞壁才能生长和分裂。为此,细胞必须小心翼翼地撕裂细胞壁,使其扩张和变化,同时迅速用新材料修补缝隙,防止细胞壁坍塌。这种细胞壁重塑过程包括裂解酶(又称自溶酶)对键的裂解,以及随后肽聚糖合成酶对新细胞壁材料的插入。这两组相互对抗的蛋白质的活动必须密切协调,以防止肽聚糖层出现薄弱点,导致细胞溶解和死亡。马克斯-普朗克陆地微生物学研究所研究员、马尔堡大学微生物学教授马丁-坦比希勒领导的研究小组开始研究自溶机制的组成和功能。他们的研究重点是淡水环境中的新月柄杆菌,这种细菌被广泛用作研究细菌基本细胞过程的模式生物。Thanbichler认为,研究自溶蛋白的功能是一项具有挑战性的任务。"虽然我们对合成机器有很多了解,但自溶蛋白被证明是一个难以攻克的难题"。Thanbichler团队的博士后研究员MariaBillini补充说:"细菌通常含有多种类型的自溶蛋白,它们来自不同的酶家族,具有不同的靶标。这意味着这些蛋白质具有高度冗余性,删除单个自溶蛋白基因往往对细胞形态和生长影响甚微。"通过共免共沉淀筛选和体外蛋白质-蛋白质相互作用试验对潜在的自溶蛋白调节因子进行分析后发现,一种名为DipM的因子在细菌细胞壁重塑过程中发挥着关键作用。这种关键的调节因子是一种可溶性的周质蛋白,竟然与几类自溶蛋白以及一种细胞分裂因子相互作用,显示出这种调节因子以前未知的杂交性。DipM能够刺激两种活性和折叠方式完全不同的肽聚糖分解酶的活性,这使它成为第一个被发现的能够控制两类自溶酶的调节因子。值得注意的是,研究结果还表明,DipM使用单一界面与其各种靶标相互作用。这项研究的第一作者、博士生阿德里安-伊斯基耶多-马丁内斯(AdrianIzquierdoMartinez)说:"破坏DipM会导致细胞壁重塑和分裂过程的各个环节失去调控,最终导致细胞死亡。"因此,它作为自溶蛋白活性协调者的适当功能对于新月柄杆菌正常的细胞形状维持和细胞分裂至关重要。"对DipM的全面表征揭示了一个新颖的相互作用网络,包括一个自我强化环,它将溶解性转糖基酶和可能的其他自溶蛋白与新月柄杆菌细胞分裂装置的核心连接起来,也很可能与其他细菌的细胞分裂装置连接起来。因此,DipM协调着一个复杂的自溶蛋白网络,其拓扑结构与之前研究的自溶蛋白系统大不相同。马丁-坦比希勒(MartinThanbichler)指出:"这种多酶调节器的功能失常会同时影响多个与细胞壁相关的过程,对它们的研究不仅有助于我们了解细胞壁如何对细胞或环境的变化做出反应。它还有助于开发新的治疗策略,通过同时破坏几种自溶途径来对付细菌"。...PC版:https://www.cnbeta.com.tw/articles/soft/1376317.htm手机版:https://m.cnbeta.com.tw/view/1376317.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人