MIT最新研究:AlphaFold蛋白质预测能力太差 目前利用价值还很低

MIT最新研究:AlphaFold蛋白质预测能力太差目前利用价值还很低2018年,Deepmind首次发布基于深度神经网络的蛋白质结构预测数据库AlphaFold,在蛋白质预测中实现了最先进的性能;去年,AlphaFold2获得了98.5%的蛋白质预测率;前段时间,Deepmind又重磅发布了数据集更新,称目前的AlphaFold已经预测了几乎所有已知的蛋白质。PC版:https://www.cnbeta.com/articles/soft/1316665.htm手机版:https://m.cnbeta.com/view/1316665.htm

相关推荐

封面图片

诺奖风向标指向AI 谷歌蛋白质结构预测模型获颁医学领域顶级奖项

诺奖风向标指向AI谷歌蛋白质结构预测模型获颁医学领域顶级奖项(来源:拉斯克奖)拉斯克奖也是知名的“诺贝尔奖风向标”。仅在过去20年时间里,包括中国科学家屠呦呦在内,一共有32位拉斯克奖得主随后拿到了诺贝尔奖。所以谷歌DeepMind此番获奖,也点燃了AI领域研究未来斩获诺贝尔奖的希望。今年的得奖者是谁?今年拉斯克奖总共设立了三个奖项,其中谷歌DeepMind的DemisHassabis和JohnJumper凭借预测蛋白质3D形状的人工智能系统AlphaFold拿下了今年的基础研究奖。作为支撑人体基本生命活动的物质,蛋白质由20种氨基酸呈念珠状连接形成三维形状,而形状本身决定了蛋白质的功能,所以研究蛋白质形状一直是医学领域的热门方向。1972年,凭借蛋白质折叠研究荣获诺贝尔奖的美国生物化学家克里斯蒂安·B·安芬森,在发表获奖感言时曾表示,总有一天,我们可以仅凭借氨基酸的序列来预测任意蛋白质的三维结构。而他提出的设想终于在机器学习和人工智能的时代实现了。AlphaFold名字里的Fold,就是取自这里的“折叠”之意。时至今日,过往需要X射线、低温电子显微镜、核磁共振等技术耗费数月、甚至几年的事情,最短只需要几分钟就能得出准确性相当高的结果。拉斯克奖表示,这种变革性的方法正在迅速推进基本生物过程的理解,并促进药物设计。AlphaFold在去年发布了一个包含2亿蛋白质预测结构的数据库,这个数量已经接近人类科学已知的所有蛋白质。与大众更加熟悉的AlphaGo类似,AlphaFold是通过机器学习17万个蛋白质序列,以及科学家在实验室中研究出的结构进行训练,掌握了预测蛋白质结构的诀窍。正因为预测蛋白质形状在医学领域的重要性,所以AlphaFold、以及后续准确率更高的AlphaFold2问世后,一直被媒体称为“有机会冲击诺奖的成就”。除了AlphaFold外,今年的拉斯克临床医学研究奖颁给了麻省理工大学的詹姆斯·藤本和埃里克·斯旺森,以及俄勒冈健康&科学大学的华裔科学家DavidHuang,以表彰他们在光学相干层析成像(OCT成像)领域的突出贡献。与X射线、核磁共振、超声成像等医学成像技术相比,OCT具有成本低、分辨率高、非接触、无损伤等优势。经过近30年的发展,OCT在眼科检查、冠状动脉疾病以及癌症研究领域均均有所建树。行业研究机构Reportlinker在今年4月发布的报告中预期,到2028年全球OCT市场有望达到21亿美元。最后,荷兰癌症研究所的PietBorst获得了今年的拉斯克医学科学特别成就奖,表彰他在医学研究领域超过50年的非凡职业生涯。拉斯克奖表示,Borst在多个领域都取得了开创性的发现:他的研究揭示了人体对癌症治疗的反应、寄生虫如何逃避人体免疫系统,并为导致癌症药物耐受的分子泵提供了深入的见解。他阐明了一个出乎意料的新代谢途径,揭示了一种新的DNA构建模块,并确定了一种遗传性疾病的生化基础。除了科研外,在他的领导下荷兰癌症研究所成为世界一流的机构。另外Borst也在教学、外部机构指导、公众教育等领域取得了卓越的成就。顺便一提,今年已经89岁的Borst,也是荷兰(在他那个年龄段)的顶级网球选手。...PC版:https://www.cnbeta.com.tw/articles/soft/1385537.htm手机版:https://m.cnbeta.com.tw/view/1385537.htm

封面图片

谷歌 DeepMind 发布 AlphaFold 3:可预测药物如何与蛋白质相互作用

谷歌DeepMind发布AlphaFold3:可预测药物如何与蛋白质相互作用谷歌DeepMind公司近日推出了AlphaFold3,通过预测所有生命分子是如何相互作用的,加速寻找新药和探索新的治疗方法,治疗癌症、帕金森氏症、疟疾、肺结核等疾病。AlphaFold3能够预测人体每个细胞分子的复杂形状,以及如何相互连接,以及其中最小的变化如何影响可能导致疾病的生物功能。AlphaFold3能够生成活细胞及其联合3D结构,预测数百万种组合的相互作用,准确率要比现有常规方法高50%,并且可以在几秒钟内生成通常需要数月或数年才能完成的预测。科学家和医学专家希望借助AlphaFold3,深入研究抗体和药物的相互作用,寻找更好的治疗方法。DeepMind创始人兼首席执行官DemisHassabis表示,该项目为研究人员提供了一套比较完整的“工具集”,不仅大幅提高研发新药物的速度,而且可以改变人类对生物世界的理解。来源,频道:@kejiqu群组:@kejiquchat

封面图片

MIT的 "FrameDiff" 生成式AI想象出可能改变医学的新蛋白质结构

MIT的"FrameDiff"生成式AI想象出可能改变医学的新蛋白质结构FrameDiff系统在构建单个蛋白质的任务中进行了测试,研究人员发现它可以构建多达500个部分的大蛋白质。与以前的方法不同,它不需要依赖预先存在的蛋白质结构图。图片来源:AlexShipps/MITCSAILviaMidjourney试想一下,如果我们能够加快针对新出现的病原体制造疫苗或药物的进程,那将会怎样?如果我们的基因编辑技术能够自动生成蛋白质,纠正导致癌症的DNA错误,那将会怎样?寻找能够与靶标强结合或加速化学反应的蛋白质对于药物开发、诊断和众多工业应用至关重要,但这往往是一项旷日持久且成本高昂的工作。为了提高我们在蛋白质工程方面的能力,麻省理工学院CSAIL的研究人员发明了"FrameDiff",这是一种用于创建超越自然界的新蛋白质结构的计算工具。这种机器学习方法生成的"框架"符合蛋白质结构的固有特性,使其能够独立于已有的设计构建新型蛋白质,从而实现前所未有的蛋白质结构。在自然界中,蛋白质设计是一个缓慢的过程,需要数百万年的时间。麻省理工学院CSAIL博士生JasonYim说:"我们的技术旨在为解决比自然界发展速度更快的人类问题提供答案。我们的目标是利用这种新的能力生成合成蛋白质结构,从而提高各种能力,例如更好的粘合剂。这意味着工程蛋白质可以更有效、更有选择性地附着在其他分子上,对靶向给药和生物技术有着广泛的影响,它可能发展出更好的生物传感器的开发。它还可能对生物医学领域及其他领域产生影响,如开发更高效的光合作用蛋白、创造更有效的抗体以及用于基因治疗的纳米粒子工程等。"框架结构蛋白质结构复杂,由许多原子通过化学键连接而成。决定蛋白质三维形状的最重要原子被称为"骨架",有点像蛋白质的脊柱。骨架上的每个原子三元组都具有相同的化学键模式和原子类型。研究人员注意到,这种模式可以利用微分几何和概率的思想来构建机器学习算法。这就是框架的作用所在:从数学上讲,这些三元组可以被建模为刚体,称为"框架"(物理学中常见的),在三维空间中具有位置和旋转。这些框架为每个三元组提供了足够的信息,使其能够了解周围的空间环境。机器学习算法的任务是学习如何移动每个框架来构建蛋白质骨架。通过学习构建现有的蛋白质,该算法有望推广并能够创造出自然界中从未见过的新蛋白质。通过"扩散"训练构建蛋白质的模型需要注入噪音,随机移动所有帧,模糊原始蛋白质的样子。算法的工作就是移动和旋转每一帧,直到它看起来像原始蛋白质。虽然简单,但帧上扩散的开发需要黎曼流形上随机微积分的技术。在理论方面,研究人员开发了用于学习概率分布的"SE(3)扩散",它将每个帧的平移和旋转部分非难连接起来。微妙的扩散艺术2021年,DeepMind推出了AlphaFold2,这是一种深度学习算法,用于从序列预测三维蛋白质结构。在创建合成蛋白质时,有两个基本步骤:生成和预测。生成"是指创建新的蛋白质结构和序列,而"预测"是指找出序列的三维结构。AlphaFold2也使用框架来建立蛋白质模型,这并非巧合。SE(3)扩散和FrameDiff的灵感来自于将框架纳入扩散模型,从而进一步发展了框架的概念,这种生成式人工智能技术已经在图像生成领域大受欢迎,例如Midjourney。蛋白质结构生成和预测之间共享的框架和原理意味着两端的最佳模型是兼容的。在与华盛顿大学蛋白质设计研究所的合作中,SE(3)扩散已被用于创建和实验验证新型蛋白质。具体来说,他们将SE(3)扩散与RosettaFold2结合起来,RosettaFold2是一种蛋白质结构预测工具,与AlphaFold2很相似,从而产生了"RFdiffusion"。这一新工具使蛋白质设计人员更接近于解决生物技术中的关键问题,包括开发用于加速疫苗设计的高特异性蛋白质结合剂、用于基因传递的对称蛋白质工程以及用于精确酶设计的稳健主题支架。FrameDiff未来的工作包括提高通用性,以解决药物等生物制剂的多种需求相结合的问题。另一个扩展是将模型推广到包括DNA和小分子在内的所有生物模式。研究小组认为,通过在更多的数据上扩大FrameDiff的训练并加强其优化过程,它可以生成与RFdiffusion具有同等设计能力的基础结构,同时保持FrameDiff固有的简单性。哈佛大学计算生物学家谢尔盖-奥夫钦尼科夫(SergeyOvchinnikov)说:"摒弃[FrameDiff]中的预训练结构预测模型为快速生成大长度结构提供了可能性。研究人员的创新方法为克服当前结构预测模型的局限性迈出了可喜的一步。尽管这仍是一项初步工作,但它在正确的方向上迈出了令人鼓舞的一步。因此,得益于麻省理工学院研究团队的开拓性工作,蛋白质设计在解决人类最紧迫挑战中发挥关键作用的愿景似乎越来越触手可及。"Yim与哥伦比亚大学博士后BrianTrippe、法国巴黎国家科学研究中心数据科学中心研究员ValentinDeBortoli、剑桥大学博士后EmileMathieu、牛津大学统计学教授兼DeepMind高级研究科学家ArnaudDoucet共同撰写了这篇论文。麻省理工学院教授ReginaBarzilay和TommiJaakkola为这项研究提供了建议。该团队的工作部分得到了麻省理工学院AbdulLatifJameelClinicforMachineLearninginHealth、EPSRC基金和微软研究院与剑桥大学之间的繁荣合作项目、美国国家科学基金会研究生研究奖学金项目、美国国家科学基金会Expeditions基金、机器学习促进药物发现和合成联盟、DTRA发现应对新威胁和新兴威胁的医疗对策项目、DARPA加速分子发现项目和赛诺菲计算抗体设计基金的支持。这项研究将在7月举行的国际机器学习大会上发表。...PC版:https://www.cnbeta.com.tw/articles/soft/1370909.htm手机版:https://m.cnbeta.com.tw/view/1370909.htm

封面图片

科学家用尖端人工智能揭开蛋白质的秘密

科学家用尖端人工智能揭开蛋白质的秘密该工具由KAUST生物信息学研究员MaxatKulmanov及其同事开发,在预测蛋白质功能方面优于现有的分析方法,甚至能够分析现有数据集中没有明确匹配的蛋白质。该模型被称为DeepGO-SE,它利用了类似于Chat-GPT等生成式人工智能工具所使用的大型语言模型。然后,它根据蛋白质工作方式的一般生物学原理,利用逻辑蕴含得出关于分子功能的有意义的结论。从本质上讲,它通过构建部分世界模型(在本例中为蛋白质功能),并根据常识和推理推断出在这些世界模型中应该发生的事情,从而赋予计算机逻辑处理结果的能力。一种新的人工智能(AI)工具能对未知蛋白质的功能进行逻辑推理,有望帮助科学家揭开细胞内部的奥秘。图片来源:©2024KAUST;IvanGromicho他补充说:"这种方法有很多应用前景,"KAUST生物本体论研究小组负责人罗伯特-霍恩多夫(RobertHoehndorf)说,"特别是当需要对神经网络或其他机器学习模型生成的数据和假设进行推理时。"库尔曼诺夫和霍恩多夫与KAUST的斯特凡-阿罗德(StefanArold)以及瑞士生物信息学研究所的研究人员合作,评估了该模型破译那些在体内作用未知的蛋白质功能的能力。该工具成功地利用了一种鲜为人知的蛋白质的氨基酸序列数据及其与其他蛋白质的已知相互作用,并精确地预测了其分子功能。该模型非常精确,在一次国际功能预测工具竞赛中,DeepGO-SE在1600多种算法中名列前20位。KAUST团队目前正在利用这一工具研究在沙特阿拉伯沙漠极端环境中生长的植物中发现的神秘蛋白质的功能。他们希望这些发现将有助于确定生物技术应用中的新型蛋白质,并希望其他研究人员也能使用这一工具。库尔曼诺夫解释说:"DeepGO-SE分析未表征蛋白质的能力可以促进药物发现、代谢通路分析、疾病关联、蛋白质工程、筛选感兴趣的特定蛋白质等任务。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418103.htm手机版:https://m.cnbeta.com.tw/view/1418103.htm

封面图片

微软开源新型蛋白质生成人工智能 EvoDiff

微软开源新型蛋白质生成人工智能EvoDiff但是,从计算和人力资源的角度来看,目前在实验室设计蛋白质的过程成本高昂。它需要提出一种能在体内执行特定任务的蛋白质结构,然后找到一种可能"折叠"到该结构中的蛋白质序列(组成蛋白质的氨基酸序列)。(蛋白质必须正确折叠成三维形状,才能实现其预期功能)。其实不一定非要这么复杂。本周,微软公司推出了一个通用框架EvoDiff,该公司声称可以根据蛋白质序列生成"高保真"、"多样化"的蛋白质。与其他蛋白质生成框架不同的是,EvoDiff不需要目标蛋白质的任何结构信息,省去了通常最费力的步骤。微软高级研究员凯文-杨(KevinYang)说,EvoDiff开源后,可用于创建新疗法和给药方法的酶,以及用于工业化学反应的新酶。"我们的设想是,EvoDiff将扩展蛋白质工程的能力,使其超越结构-功能范式,走向可编程、序列优先的设计,"EvoDiff的共同创建者之一杨在接受TechCrunch电子邮件采访时说。"通过EvoDiff,我们证明了我们可能实际上并不需要结构,而是'蛋白质序列就是你所需要的一切',从而可控地设计出新的蛋白质"。EvoDiff框架的核心是一个640参数模型,该模型是根据所有不同物种和功能类别蛋白质的数据训练而成的。(参数"是人工智能模型从训练数据中学到的部分,基本上定义了模型处理问题的技能--在本例中就是生成蛋白质)。训练模型的数据来自序列比对的OpenFold数据集和UniRef50,后者是UniProt数据集的一个子集,UniProt是由UniProt联盟维护的蛋白质序列和功能信息数据库。EvoDiff是一种扩散模型,其结构类似于稳定扩散和DALL-E2等许多现代图像生成模型。EvoDiff可以学习如何从几乎完全由噪声组成的起始蛋白质中逐渐减去噪声,从而使其缓慢地、一步一步地接近蛋白质序列。EvoDiff生成蛋白质的过程。扩散模型已越来越多地应用于图像生成以外的领域,从设计新颖的蛋白质(如EvoDiff),到创作音乐,甚至合成语音。"如果说[从EvoDiff]中能得到什么启发的话,我认为那就是我们可以--也应该--通过序列来生成蛋白质,因为我们能够实现通用性、规模和模块化,"EvoDiff的另一位共同贡献者、微软高级研究员阿瓦-阿米尼(AvaAmini)通过电子邮件说。"我们的扩散框架让我们有能力做到这一点,也让我们能够控制如何设计这些蛋白质,以实现特定的功能目标。"对于阿米尼的观点,EvoDiff不仅能创造新蛋白质,还能填补现有蛋白质设计中的"空白"。例如,如果蛋白质的某一部分与另一种蛋白质结合,该模型就能围绕这一部分生成符合一系列标准的蛋白质氨基酸序列。由于EvoDiff是在"序列空间"而非蛋白质结构中设计蛋白质,因此它还能合成最终无法折叠成最终三维结构的"无序蛋白质"。与正常功能的蛋白质一样,无序蛋白质在生物学和疾病中发挥着重要作用,比如增强或降低其他蛋白质的活性。需要指出的是,EvoDiff背后的研究还没有经过同行评审--至少目前还没有。参与该项目的微软数据科学家萨拉-阿拉姆达里(SarahAlAMDari)承认,在该框架投入商业应用之前,"还有很多扩展工作要做"。阿拉姆达里通过电子邮件说:"这只是一个6.4亿参数的模型,如果我们将其扩展到数十亿参数,我们可能会看到生成质量的提高。虽然我们展示了一些粗粒度策略,但要实现更精细的控制,我们希望EvoDiff以文本、化学信息或其他方式为条件,指定所需的功能。"下一步,EvoDiff团队计划测试该模型在实验室中生成的蛋白质,以确定它们是否可行。如果可行,他们将开始下一代框架的工作。...PC版:https://www.cnbeta.com.tw/articles/soft/1384011.htm手机版:https://m.cnbeta.com.tw/view/1384011.htm

封面图片

DeepMind最新AlphaFold模型有助于新药研发

DeepMind最新AlphaFold模型有助于新药研发实验室的工作仍在继续。今天,DeepMind透露,最新版本的AlphaFold(AlphaFold2的后继者)可以对蛋白质数据库(世界上最大的生物分子开放获取数据库)中的几乎所有分子生成预测。据DeepMind博客上的一篇文章称,专注于药物发现的DeepMind衍生公司IsomorphicLabs已经将新的AlphaFold模型应用于治疗药物设计,帮助表征对治疗疾病很重要的不同类型的分子结构。新的AlphaFold的功能超出了蛋白质预测的范围。DeepMind声称,该模型还可以准确预测配体的结构-与“受体”蛋白结合并导致细胞通讯方式发生变化的分子)以及核酸(包含关键遗传信息的分子)和翻译后修饰(化学修饰)的结构。蛋白质产生后发生的变化。DeepMind指出,预测蛋白质配体结构可以成为药物发现的有用工具,因为它可以帮助科学家识别和设计可能成为药物的新分子。目前,药物研究人员使用称为“对接方法”的计算机模拟来确定蛋白质和配体如何相互作用。对接方法需要指定参考蛋白质结构以及该结构上配体结合的建议位置。然而,使用最新的AlphaFold,无需使用参考蛋白质结构或建议位置。该模型可以预测以前尚未“结构表征”的蛋白质,同时模拟蛋白质和核酸如何与其他分子相互作用——DeepMind表示,目前的对接方法无法实现这种建模水平。DeepMind在博文中写道:“早期分析还表明,我们的模型在一些与药物发现相关的蛋白质结构预测问题(例如抗体结合)上远远优于(上一代)AlphaFold。我们的模型在性能上的巨大飞跃表明人工智能具有极大增强对构成人体的分子机器的科学理解的潜力。”不过,最新的AlphaFold并不完美。DeepMind和IsomorphicLabs的研究人员在一份详细介绍该系统优势和局限性的白皮书中透露,该系统无法达到预测RNA分子(人体内携带制造蛋白质指令的分子)结构的一流方法。毫无疑问,DeepMind和IsomorphicLabs都在努力解决这个问题。...PC版:https://www.cnbeta.com.tw/articles/soft/1393483.htm手机版:https://m.cnbeta.com.tw/view/1393483.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人