影响多达21.6万项研究:流行的遗传学方法被发现存在严重缺陷

影响多达21.6万项研究:流行的遗传学方法被发现存在严重缺陷根据瑞典隆德大学的最新研究,人口遗传学中最常用的分析方法存在很大的缺陷。这可能造成了不正确的结果和对种族和遗传关系的误解。该方法已被用于数十万项研究,影响了医学遗传学甚至是商业血统测试的结果。这些发现最近发表在《科学报告》杂志上。PC版:https://www.cnbeta.com/articles/soft/1320105.htm手机版:https://m.cnbeta.com/view/1320105.htm

相关推荐

封面图片

密苏里大学研究人员的遗传学新发现有助于确定猫的首次驯化时间

密苏里大学研究人员的遗传学新发现有助于确定猫的首次驯化时间密苏里大学的一项新研究发现,人类这种生活方式的转变首次驯化了猫,随着人类开始环游世界,他们把新的猫科动物朋友带在身边。猫科动物遗传学家、马里兰大学兽医学院Gilbreath-McLorn比较医学捐赠教授LeslieA.Lyons收集并分析了新月沃土地区及其周边地区以及整个欧洲、亚洲和非洲的猫的DNA,比较了近200种不同的遗传标记。"我们研究的DNA主要标记之一的变异速度非常快,为我们提供了关于最近的猫群和过去几百年的品种发展的线索,"McLorn说。"我们研究的另一个关键DNA标记是单核苷酸多态性,这是遍布整个基因组的基于单项的变化,给我们提供了关于它们几千年前古老历史的线索。通过研究和比较这两种标记,我们可以开始拼凑猫的进化故事。"LeslieA.Lyons和ThomasJuba测试了来自世界各地的样本。从紫色标示的国家测试的样本与紫色标示的其他国家有相似的特征,而从绿色标示的国家测试的样本与绿色标示的其他国家有相似的特征。Lyons补充说,虽然马和牛在不同时期在世界不同地区经历了由人类引起的各种驯化事件,但她在研究中对猫科动物遗传学的分析有力地支持了这样的理论:猫很可能只在新月沃土地区被首次驯化,然后随人类迁移到世界各地。在猫科动物的基因一代代传给小猫后,例如西欧的猫的基因构成现在与东南亚的猫相差甚远,这一过程被称为'隔离'。"我们实际上可以把猫称为半驯化的猫,因为如果我们把它们放生到野外,它们很可能仍然会猎杀小动物,并且由于它们的自然行为,能够自己生存和繁衍,"Lyons说。"与狗和其他被驯化的动物不同,我们在驯化过程中并没有真正改变猫的行为,所以猫再次证明是一种特殊的动物。"研究猫科动物遗传学30多年的Lyons说,像这样的研究也支持她更广泛的研究目标,即用猫作为生物医学模型来研究影响猫和人的遗传疾病,如多囊肾病、失明和侏儒症。"比较遗传学和精准医学在'一个健康'的概念中起着关键作用,这意味着我们为研究猫的遗传疾病的原因或如何治疗它们的疾病所做的任何事情,有朝一日对治疗人类的相同疾病都是有用的,"Lyons说。"我正在建立遗传工具,遗传资源,最终帮助改善猫的健康。在建立这些工具时,重要的是要获得有代表性的样本,了解全世界猫咪的遗传多样性,这样我们的遗传工具箱才能对帮助全球的猫咪有用,而不仅仅是在某个特定的地区。"在她的职业生涯中,Lyons与养猫人和研究合作者合作,开发了全面的猫科动物DNA数据库,科学界可以从中受益,包括对世界各地的猫科动物进行基因组测序。在2021年的一项研究中,Lyons及其同事发现,猫的基因组结构与人类的相似程度几乎超过了其他任何非灵长类哺乳动物。"我们的努力已经帮助阻止了世界各地的遗传性疾病的迁移和传递,其中一个例子是多囊肾病,因为当我们在2004年首次推出对它的基因测试时,38%的波斯猫患有这种疾病,现在,由于我们的努力,这一比例已经明显下降,我们的总体目标是在未来的道路上根除猫咪的遗传疾病。"目前,唯一可行的多囊肾病治疗方法有不健康的副作用,包括肝衰竭。Lyons目前正在与加州大学圣巴巴拉分校的研究人员合作,为那些患有这种疾病的人开发一种基于饮食的治疗试验。"如果这些试验是成功的,我们也许可以让人类尝试一下,作为一种更自然、更健康的选择,而不是服用一种可能导致肝衰竭或其他健康问题的药物,"Lyons说。"我们的努力将继续提供帮助,能成为其中的一员感觉很好。"论文《随机繁殖的猫的遗传学支持猫驯化的摇篮在近东》最近发表在《遗传学》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1337209.htm手机版:https://m.cnbeta.com.tw/view/1337209.htm

封面图片

人类对遗传学的研究,是从你碗里那粒豌豆开始的

人类对遗传学的研究,是从你碗里那粒豌豆开始的如果你问我生物课本里,对谁的名字最熟悉?那孟德尔一定榜上有名!每当我们提起孟德尔这位遗传学之父,第一印象就是他做的那些豌豆实验。孟德尔的本职工作是布尔诺(Brno,现为捷克共和国第二大城市)一家修道院的神父,他在年少求学时就表现出对动植物遗传的兴趣,在成为神父后,也依然时刻关注着对园艺学和农学相关的研究。PC版:https://www.cnbeta.com/articles/soft/1319385.htm手机版:https://m.cnbeta.com/view/1319385.htm

封面图片

推动遗传学发现:对DNA复制的分子马达的新认识

推动遗传学发现:对DNA复制的分子马达的新认识CMG的重要任务是分离DNA双螺旋的两条链,以便它们所编码的信息能够被读取和复制。研究人员和该出版物的第一作者DanielRamírezMontero说:"了解CMG如何沿着DNA移动对于我们理解DNA复制至关重要。研究DNA复制是非常重要的,因为这一过程中的错误可能导致遗传疾病或癌症。"实验装置示意图:(上图)用光学镊子(红色光束)固定含有CMG的DNA分子,同时用扫描激光(绿色光束)对其进行拍照;CMG马达用蓝色描述。下图)用光学镊子固定在未标记的DNA分子上的荧光标记的CMG分子马达(绿点)的实际图像。资料来源:改编自RamirezMontero,etal,NatureCommunications,2023。在活细胞中,CMG是通过涉及36种不同蛋白质的复杂的生物化学反应级联来组装和激活的。由斯宾诺莎奖得主NynkeDekker教授领导的一组代尔夫特大学研究人员与弗朗西斯-克里克研究所小组负责人JohnDiffley博士合作,开发了一种在细胞外进行这一严格控制的过程并测量单个CMG分子马达运动的方法。研究人员从细胞中提取了所有36种蛋白质,在DNA上建立起CMG。通过将荧光标签附着在一些蛋白质上,他们可以在荧光显微镜下直接观察CMG分子马达的运动。"通过这种新方法,我们能够观察到从无到有的单个CMG的运动。我们用光学镊子夹住含有CMG的DNA不动,以便于观察,然后拍摄CMG沿DNA移动的影片。"RamírezMontero解释说:"通过这种方式,我们可以首次在单分子水平上测量其运动。"CMG马达沿着一个由光学陷阱固定的DNA分子移动的例子。资料来源:摘自RamírezMontero,etal.,NatureCommunications,2023。利用他们自下而上的方法,结合尖端的生物化学和生物物理学,该研究小组首次能够直接看到从头开始组装的单个CMG马达的运动,并以前所未有的分辨率测量这种运动。此外,他们还意外地发现,当一种叫做ATP的关键分子不存在时,CMG可以沿着DNA随机移动;此外,他们还表明,随后ATP的重新结合使得CMG能够紧紧抓住DNA,从而停止其随机运动。这种停止是很重要的,因为它可能促进了CMG的激活,这是启动DNA复制的一个关键过程。这项工作将为进一步的研究铺平道路,这些研究可能会发现DNA复制中关键过程的未知细节。这些发现反过来可以让我们更接近了解细胞如何在每次细胞分裂时忠实地传递它们的遗传信息,以及更好地了解这一过程中可能导致遗传疾病或癌症发展的错误。生物系统乍看之下可能非常复杂和混乱,但通过在这种分辨率下观察它们,我们可以理解它们背后简单而优雅的物理学。...PC版:https://www.cnbeta.com.tw/articles/soft/1355739.htm手机版:https://m.cnbeta.com.tw/view/1355739.htm

封面图片

表观遗传学的 "重启 "逆转了小鼠的衰老 可以延长寿命

表观遗传学的"重启"逆转了小鼠的衰老可以延长寿命我们的基因组包含我们完整的DNA蓝图,它存在于我们身体的每一个细胞中。但这并不是全部--还有一层信息,被称为表观基因组,位于上面,控制着不同类型的细胞中哪些基因被开启和关闭。就好像我们身体里的每个细胞都在按照相同的操作手册(基因组)工作,但表观基因组就像一个目录,引导不同的细胞进入不同的章节(基因)。毕竟,肺部细胞与心脏细胞需要非常不同的指令。环境和生活方式因素,如饮食、运动,甚至童年经历,都可能在我们的一生中改变表观遗传学的表达。表观遗传学的变化与生物衰老的速度有关,但它们是否推动了衰老的症状或本身就是一种症状仍不清楚。对于这项新的研究,哈佛大学的研究人员在小鼠身上进行了实验以找出答案。利用一个名为"表观基因组诱导性变化"(ICE)的系统,研究小组加快了小鼠体内DNA损伤和修复的自然过程,以检查这是否也加速了衰老症状。在哺乳动物细胞中,我们的染色体每分钟经历多达一百万次的DNA断裂,而表观遗传因子在返回其原始位置之前会非常迅速地协调修复。该团队设计了小鼠,其经历DNA断裂的速度比正常速度快三倍。随着时间的推移,他们发现表观遗传因子变得更加"心不在焉",在修复DNA断裂后不会返回原处,导致表观遗传组变得杂乱。果然,到了6个月大时,小鼠显示出衰老的身体迹象,与同龄的未编辑小鼠相比,它们的健康状况似乎差了很多。科学家们说,他们以此证实了表观基因组在衰老中的作用。下一步是测试我们是否能对此做些什么,因此该团队实施了一种由三个基因组成的基因治疗鸡尾酒,称为Oct4、Sox2和KLF4。这些基因在干细胞中很活跃,在之前的工作中,该团队发现它们可以用来恢复患有老年性青光眼的小鼠的视力。在这种情况下,ICE小鼠的衰老生物标志物急剧减少。他们的表观基因组变得无序,使他们的组织和器官恢复到更年轻的状态。该研究的资深作者大卫-辛克莱说:"这就像重新启动一台故障的计算机。"[它]启动了一个表观遗传程序,导致细胞恢复它们年轻时的表观遗传信息,区别在于这是一次永久性的重置。"该团队说,这一发现有可能是巨大的。通过解决衰老本身,许多由这个自然过程产生的疾病可以得到更有效的治疗。"如果正确的话,这意味着癌症、糖尿病和阿尔茨海默氏症可能有相同的根本原因,可以通过单一的治疗方法逆转来治疗或治愈与年龄有关的疾病,"辛克莱尔在Twitter上发布。虽然在实现这样的崇高目标之前还有很多研究要做,但工作已经在进行中。一篇尚未经过同行评审的预印本论文对老年小鼠系统地施用相同的基因治疗鸡尾酒,其年龄相当于人类的77岁。这些小鼠的寿命比未经治疗的小鼠长9%。...PC版:https://www.cnbeta.com.tw/articles/soft/1339405.htm手机版:https://m.cnbeta.com.tw/view/1339405.htm

封面图片

遗传学研究揭示了一苏格兰妇女无法感知疼痛且伤口愈合更快的原因

遗传学研究揭示了一苏格兰妇女无法感知疼痛且伤口愈合更快的原因卡梅伦的边缘超能力是在她60多岁时才被发现的,当时她接受了两次重大的外科手术,事后报告几乎没有疼痛。当医生追问她的个人疼痛史时,她报告说她从未真正感觉到轻微的割伤和擦伤,有些烧伤她甚至没有注意到,直到她闻到烧焦的肉,她在以前做过的手术后也不需要止痛药。卡梅隆被介绍给牛津大学和伦敦大学学院的疼痛遗传学家,他们发现两个基因突变是她病情的根源。一个是在一个叫做FAAH的基因中,该基因以前被认为是控制疼痛、情绪和记忆的。另一个以前被认为是一个没有功能的"垃圾"基因,但从这个案例中发现它可以调解FAAH的表达。因此他们将其命名为FAAH-OUT。乔-卡梅伦,她几乎不感到疼痛,也从不感到焦虑或害怕在新的研究中,研究小组调查了FAAH-OUT在生物学上是如何工作的。在他们的方法中,他们在细胞上使用CRISPR基因编辑来检查该突变如何影响其他基因,并检查了从其他患者身上提取的成纤维细胞,以研究FAAH和FAAH-OUT如何影响其他分子途径。事实证明,FAAH并不是这些突变的唯一基因--其他348个基因也被抑制,而令人吃惊的是797个基因被打开。其中包括与伤口愈合有关的WNT途径;与情绪调节有关的BDNF;以及调节阿片类药物水平的ACKR3。总之,这些可能有助于解释卡梅伦对疼痛不敏感,她的伤口愈合速度明显提高,以及她的焦虑和恐惧水平普遍较低。这是一个耐人寻味的案例研究,与其他像Marsili家族一样的案例一起,可以帮助科学家确定新的药物治疗目标,以抑制疼痛或改善精神健康症状。这项研究的高级作者安德烈-奥科罗科夫博士说:"FAAH-OUT基因只是一个广阔大陆的一个小角落,这项研究已经开始绘制这个'新大陆'。除了无痛的分子基础外,这些探索还发现了影响伤口愈合和情绪的分子途径,所有这些都受到FAAH-OUT突变的影响。作为科学家,探索是我们的职责,我认为这些发现将对伤口愈合、抑郁症等研究领域产生重要影响"。该研究发表在《大脑》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1362627.htm手机版:https://m.cnbeta.com.tw/view/1362627.htm

封面图片

科学家发现表观遗传学钥匙 揭开常见致命癌症的神秘面纱

科学家发现表观遗传学钥匙揭开常见致命癌症的神秘面纱但SOX9也有阴暗的一面,因为它与全球一些最致命的癌症有关,如肺癌、皮肤癌、头颈癌和骨癌。就皮肤而言,某些异常的成体表皮干细胞可能会意外地激活SOX9,不管它们选择的是哪种途径--而且永远不会关闭,从而启动一个最终激活癌基因的过程。科学家们从未完全理解这种注定的结果是如何在分子水平上发生的。但现在,洛克菲勒研究人员揭示了这一恶性转折背后的机制。原来,SOX9属于一类特殊的蛋白质,能够控制遗传信息从DNA到mRNA的传递。这意味着它有能力撬开遗传物质的密封袋,与其中先前沉默的基因结合,并激活它们。他们将研究结果发表在《自然-细胞生物学》(NatureCellBiology)杂志上。罗宾-切默斯-纽斯汀哺乳动物细胞生物学与发育实验室负责人伊莱恩-福克斯说:"我们的发现为了解癌症如何破坏干细胞精心调整的决策过程,从而使其无法制造正常组织提供了新的见解。它还揭示了作为潜在治疗靶点的新的SOX9激活基因"。基因表达的稀有钥匙我们的基因组并不是一本打开的书。事实上,它更像是一个图书馆,里面藏着几十亿本书,但大部分都被锁起来了--大部分遗传物质实际上都沉寂在非编码的、被组蛋白紧密结合的DNA包中,处于封闭状态。DNA和组蛋白共同构成了所谓的封闭染色质。转录蛋白或转录因子无法访问被包裹在这种封闭物质中的基因,而这些转录蛋白或转录因子可以帮助表达其中的基因。表皮中由SOX9诱导的类似基底细胞癌的病变(绿色)。红色为异常分化,蓝色为细胞核。图片来源:杨义浩,富克斯实验室但有一些罕见的关键因素并不只是转录因子。这些"先锋因子"可以打开这些基因包。它们拥有窥视封闭染色质内部并识别其中结合位点的超能力。然后,它们会招募其他转录因子,帮助它们撬开封闭的染色质,并与核糖体上的受体位点结合,从而对染色质进行重新编程,激活新基因。这通常发生在发育的早期阶段,此时干细胞的命运尚未确定。在成人皮肤中,SOX9通常与维持成人毛囊干细胞的身份有关。在成人表皮干细胞中,它通常受到抑制。但基底细胞和鳞状细胞癌的情况并非如此。该研究的第一作者杨一浩说:"在疾病背景下,SOX9在成体表皮干细胞中被重新激活。"这一过程如何逐步展开一直是未知数。"体外重编程发生得非常快--不到48小时。在如此短的时间窗口内,很难很好地解决事件发生的顺序问题。SOX9交换为了找出答案,研究人员设计了含有SOX9拷贝的小鼠,当给小鼠喂食强力霉素(一种诱导转基因SOX9的药物)时,SOX9拷贝可以在小鼠的成体表皮干细胞中被激活。福克斯解释说:"在成体组织中,胚胎发生时很容易做出的选择会被严格抑制,这样成体干细胞就会坚持完成其专门任务。"然而,释放SOX9被证明是一个强有力的影响因素,可逐步将表皮干细胞重编程为新的命运。杨说:"仅通过表达单一的SOX9转录因子,我们就能在第六周诱导出基底细胞癌样结构。到第12周时,我们开始看到类似人类基底细胞癌的病变。"与此同时,他们还跟踪了幕后的表观遗传过程。在头两周,SOX9关闭了表皮干细胞基因。它们逆转了正常状态,开始开启毛囊干细胞基因。研究人员在寻找机制时发现,为了实现这种命运转换,SOX9从活跃的表皮基因中劫持了核机制,并将这些偷来的设备带到了沉默的毛囊基因中。然后,它又利用其他转录因子撬开封闭的染色质,与其中的沉默基因结合,开启它们。福克斯说:"当SOX9不能被调控时,干细胞就不能制造毛发,而是不断增殖并激活几种新的转录因子,最终导致基底细胞癌状态。"杨说,这种复杂的身份来回转换之所以可能,是因为SOX9是一种先驱因子。只有先驱因子才有能力进入封闭的染色质。由于SOX9在全球许多最致命的癌症中过于活跃,研究人员希望找到干预它在这些细胞增殖中的作用的方法。Fuchs说:"通过确定SOX9的相互作用蛋白及其靶基因在恶性肿瘤过程中的变化,我们希望能在发现治疗这些癌症的新药靶点方面取得进展。"...PC版:https://www.cnbeta.com.tw/articles/soft/1375475.htm手机版:https://m.cnbeta.com.tw/view/1375475.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人