科学家利用CRISPR工具识别导致肝癌的基因突变

科学家利用CRISPR工具识别导致肝癌的基因突变CSHL的科学家们在小鼠身上创造了两种肝脏肿瘤亚型,上面的图像。左边的图像显示了一种肝脏肿瘤亚型,它与人类肝癌的最常见形式--肝细胞癌有关。右边是一种与较罕见的肝癌有关的肿瘤亚型,主要发现于儿童,名为肝母细胞瘤。基因包含产生蛋白质所需的信息。拼接是一个过程,从基因编码的信息中复制的RNA信息在被用作制造特定蛋白质的蓝图之前被编辑。源自单一基因、功能高度相似但氨基酸序列不同的蛋白质被称为异构体。异构体的产生是身体对一个基因或蛋白质的特性进行模仿的方式。不同的异构体可以导致不同类型的癌症肿瘤的形成。这些肿瘤亚型很难在实验室中产生,因此难以研究。为了更好地了解异构体如何导致不同类型肝癌的产生,一项新的研究使用基因编辑工具CRISPR/Cas9来研究不同的异构体如何导致不同肿瘤亚型的发展。该研究的通讯作者SemirBeyaz说:"每个人都认为癌症只是一种类型。但是有了不同的异构体,你最终会出现具有不同特征的癌症亚型。"研究人员使用CRISPR/Cas9锁定了小鼠基因CTNNB1的一个部分。CTNNB1基因提供了制造一种叫做β-catenin的蛋白质的指令,这种蛋白质参与调节和协调细胞间的粘附,并参与基因转录。以前的研究已经确定β-catenin是一种有效的致癌基因,这种基因可以将健康细胞转化为肿瘤细胞。CTNNB1基因的突变与广泛的癌症有关,包括肝癌和结肠癌。CTNNB1基因第3外显子的突变--外显子是编码蛋白质的DNA或RNA的一个部分--是参与肿瘤形成的基因转录的关键。在目前的研究中,研究人员希望确定β-catenin突变如何推动肝癌肿瘤亚型的发展,即肝细胞癌(HCC)和肝母细胞瘤(HB)。HCC是成人肝癌中最常见的类型,约占所有肝癌的90%,而HB是一种罕见的肝癌形式,常见于儿童。通常,CRISPR/Cas9技术被用来通过移除DNA序列的部分来抑制基因功能(功能丧失)。但在这里,研究人员首次将其用于功能增益研究,在小鼠中创造不同的致癌突变。以这种方式使用CRISPR/Cas9刺激了蛋白质的活性,因此也刺激了肿瘤的生长。通过对肿瘤亚型、HCC和HB进行基因测序,研究人员发现,CRISPR/Cas9诱导的β-catenin异构体推动了肝脏肿瘤亚型。Beyaz说:"我们能够确定那些与不同癌症亚型相关的异构体。对我们来说,这是一个令人惊讶的发现"。为了证实这些异构体导致了突变,研究人员测试了他们是否能够在不使用CRISPR的情况下在小鼠中产生肝癌亚型。他们发现确实可以。该研究强调了在功能增益研究中使用CRISPR/Cas9的潜力,并创造了一种模拟某些肝脏肿瘤亚型的新方法。它还进一步证明了外显子3在肿瘤发展中的作用以及靶向外显子跳过的好处。外显子跳过是一种疗法,它使用突变特异性反义寡核苷酸(AON)--一种实验室制造的可以与特定RNA分子结合的DNA或RNA位点--来诱导RNA剪接,使细胞"跳过"有问题的或错位的外显子。研究人员希望他们的发现可能会指导未来对癌症的新治疗干预措施的研究。Beyaz说:"最终,我们想做的是找到研究癌症生物学的最佳模型,以便我们能够找到治疗方法。"该研究发表在《病理学杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1354177.htm手机版:https://m.cnbeta.com.tw/view/1354177.htm

相关推荐

封面图片

不只是一种类型 - 识别癌症基因的多种个性

不只是一种类型-识别癌症基因的多种个性近距离观察小鼠的肝脏;使用SemirBeyaz实验室设计的一种新的基因编辑策略,具有深色中心的细胞变成了癌症。资料来源:Beyaz实验室/冷泉港实验室现在,冷泉港实验室的SemirBeyaz助理教授利用CRISPR-Cas9基因编辑工具开发了一种新技术,用于模拟某些亚型的肝癌肿瘤。基因包含了我们身体创造蛋白质所需的信息。由同一基因产生的高度相似的蛋白质被称为异构体。不同的异构体产生不同的肿瘤。这个过程被称为外显子跳转,即一个基因的多个部分被缝合在一起,以制造不同版本的蛋白质。CSHL的科学家在小鼠身上创造了两种肝脏肿瘤亚型,如上图所示。左边的图像显示了一种肝脏肿瘤亚型,它与人类肝癌的最常见形式--肝细胞癌有关。右边是一种与较罕见的肝癌有关的肿瘤亚型,主要在儿童中发现,名为肝母细胞瘤。资料来源:Beyaz实验室/冷泉港实验室"每个人都认为癌症只是一种类型,"Beyaz解释说。"但是有了不同的异构体,你就会出现具有不同特征的癌症亚型"。Beyaz和他的同事通过用CRISPR锁定小鼠基因的一个部分Ctnnb1,产生了两种不同的肿瘤亚型。该工具主要用于抑制基因功能。这是第一次用CRISPR在小鼠体内产生不同的致癌功能增益突变。这些突变增强了蛋白质的活性以促进肿瘤的生长。该团队对每个肿瘤亚型进行了测序,以弄清哪种同构体与他们观察到的差异有关。Beyaz说:"我们能够确定那些与不同癌症亚型相关的异构体。"对我们来说,这是一个令人惊讶的发现"。为了确认这些异构体确实造成了差异,研究人员们在不使用CRISPR的情况下在小鼠体内产生了这些异构体。他们发现,他们确实能够生成具有各自特征的两种不同的肿瘤亚型。这两种肝脏肿瘤亚型在人类中也有发现。Beyaz所针对的突变可以导致结肠癌和肝癌。瞄准外显子跳转已经成为治疗癌症和其他疾病的潜在治疗方法。Beyaz的新研究方法允许研究人员使用CRISPR在活体小鼠细胞中研究这一现象。该平台有朝一日可以帮助研究人员开发新的治疗干预措施。Beyaz解释说,"我们想做的是找到研究癌症生物学的最佳模型,以便我们能够找到治疗方法"。...PC版:https://www.cnbeta.com.tw/articles/soft/1356181.htm手机版:https://m.cnbeta.com.tw/view/1356181.htm

封面图片

科学家首次实现用无创CRISPR法敲除焦虑基因

科学家首次实现用无创CRISPR法敲除焦虑基因心理健康是我们生活中不可或缺的一部分。心理健康不佳会影响我们的幸福感、工作能力以及与家人、朋友和更广泛社区的关系。焦虑症——包括广泛性焦虑症、恐慌症和社交焦虑症——的特征是过度恐惧和担忧,严重到足以导致严重的痛苦或功能受损。根据世界卫生组织(WHO)的数据,2019年全球有3.01亿人患有焦虑症,其中包括5800万儿童和青少年。他们还注意到,随着COVID-19大流行的爆发,焦虑症的患病率增加了25%。虽然焦虑症通常通过日常药物治疗,但这可能会产生副作用,而且对某些人来说,并不能缓解他们的焦虑症状。现在,研究人员已经开发出一种非侵入性方法,可将CRISPR/Cas9基因编辑技术输送到大脑,以敲除与小鼠焦虑和抑郁相关的基因。他们表示,这是首次成功展示能够通过血脑屏障实现基因改造的无创CRISPR/Cas9递送。顾名思义,血脑屏障(BBB)是一种结构和功能障碍,可阻止细菌和病毒等有害物质通过血液进入大脑,同时允许必需的营养素进入。虽然这对为了维护我们的健康,BBB非常有效,可以防止治疗剂进入大脑。使用CRISPR/Cas9进行精确基因编辑已显示出治疗各种疾病的巨大潜力,包括肌肉萎缩症、HIV和肺癌。CRISPR系统使用一种酶(Cas9),该酶在向导RNA(gRNA)的指导下剪切出DNA的特定部分。它可以去除有问题的基因,例如导致疾病的基因。但是,与其他治疗剂一样,BBB对CRISPR系统提出了挑战。在当前的研究中,研究人员对CRISPR/Cas9系统的鼻内递送进行了实验,以查看它是否能成功穿过BBB并敲除调节血清素可用性的血清素受体(HTR2A)基因。这种神经递质执行许多功能,包括调节情绪。血清素过少与焦虑和抑郁有关,这就是为什么患有这些疾病的人经常服用选择性血清素再摄取抑制剂(SSRIs),这会增加大脑中的血清素水平。鼻内递送的治疗剂通过鼻腔内的神经通路到达中枢神经系统。它不仅是一种实用的递送方法,而且是无创的。研究人员将一种病毒载体,即一种灭活的腺相关病毒(AAV),注入小鼠的鼻子,将gRNA传递给大脑中的神经元,使其能够与目标HTR2A基因结合,随后该基因被Cas9切除。AAV通常用作递送CRISPR/Cas9载荷的载体,因为它们被认为是安全的并且引起免疫反应的可能性很低。研究人员使用了AAV9亚型,这是一种高效载体,可将载荷运送到整个中枢神经系统的神经元。在施用基因编辑包五周后,使用明暗行为测试和大理石掩埋测试来测试小鼠的焦虑。在明暗测试中,小鼠可以选择探索明亮的房间还是黑暗的房间。焦虑的老鼠往往会在暗室里呆更多的时间。对于大理石掩埋试验,将玻璃弹珠以网格状放置在锯末中,并允许小鼠在固定时间内探索笼子。焦虑的老鼠会埋下更多的弹珠。研究人员发现接受治疗的小鼠HTR2A表达减少了8.47倍。关于大理石掩埋测试,与对照组相比,这些小鼠掩埋的大理石数量减少了14.8%。而且,对于光暗测试,经过处理的小鼠在光照盒中停留的时间明显增加(增加了35.7%),并且进入光照盒的次数也更多(增加了27.5%)。这些结果与用苯二氮卓类地西泮治疗的小鼠相当,后者在光照盒中的时间为40%,这导致研究人员得出结论,他们的HTR2A靶向治疗与药物的效果相当。“我们的结果表明,即使神经元基因编辑的百分比很低,也观察到了显着的抗焦虑[减少焦虑]效果,”研究人员说。“CNS[中枢神经系统]内的递送是使用无创鼻内递送平台完成的,该平台可以绕过BBB,这通常是CRISPR/Cas9等大型货物的主要障碍。”研究人员表示,他们的概念验证研究表明,某些特征可以长期改变,这对开发治疗焦虑和抑郁的新药物具有重要意义,尤其是对那些对药物有抵抗力的人。该研究发表在PNASNexus杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1366587.htm手机版:https://m.cnbeta.com.tw/view/1366587.htm

封面图片

研究发现小鼠自带先天性基因疗法 可避免基因突变

研究发现小鼠自带先天性基因疗法可避免基因突变在成为成熟的信使核糖核酸(mRNA)之前,前mRNA会在细胞核内被修改。内含子(RNA的非编码部分)被去除,外显子(RNA的编码部分)被拼接在一起,形成成熟的mRNA。然后,成熟的mRNA被输出到细胞质中,细胞的核糖体"机器"在那里将遗传信息解码成细胞过程所需的蛋白质。但是,RNA也可以通过非编码RNA来调节基因活动,因为非编码RNA的基因序列并不用于生成蛋白质。4.5SH就是这样一种非编码RNA,它只存在于小鼠和大鼠等小型啮齿动物体内。4.5SH基因形成了一个大型的串联重复序列集群,即在一个基因中多次重复的DNA短序列,每个细胞中的分子数超过10,000个。由日本北海道大学研究人员领导的一项新研究发现,4.5SHRNA的作用是规避小鼠DNA在mRNA成熟过程中发生的突变。该研究的通讯作者之一中川伸一说:"4.5SHRNA于20世纪70年代被发现,尽管它在许多类型的组织中大量存在,但其功能40多年来一直是个谜。"研究人员发现,敲除小鼠的4.5SH基因是致命的,会导致小鼠在胚胎阶段死亡,这表明4.5SHRNA是小鼠体内一种重要的非编码RNA。中川说:"众所周知,小鼠基因组中编码重要蛋白质的基因有许多致命突变。"4.5SHRNA具有大量清除这些突变的能力--本质上,它是一种天然的基因疗法,可以防止突变"。RNA测序显示,4.5SHRNA能保护转录组(所有RNA转录本的集合,包括编码和非编码)免受异常外显子的影响,否则这些异常外显子会引入过早的终止密码子,即终止蛋白质翻译过程的信号,或者移帧突变,即改变序列读取方式的插入或缺失。通过分析4.5SHRNA的分子结构,研究人员发现它由两部分组成:一个是能识别异常外显子的传感器模块,另一个是能与异常外显子碱基配对的效应模块,以防止它们通过一种叫做替代剪接的过程并入mRNA中。在替代剪接过程中,一个突变的外显子会在剪接过程中被跳过,从而产生一种功能相似的新蛋白质(称为异构体),而不会丢失原有的蛋白质。中川说:"据我们所知,这是第一个自然产生的RNA能够以明确的开/关方式调节替代剪接的例子。我们的研究还表明,这种非编码RNA中的很大一部分可能参与控制替代剪接。"4.5SHRNA可作为小鼠的天然基因治疗剂,防止RNA变异(左)。通过对4.5SHRNA进行工程设计,有可能将其用于治疗人类遗传疾病(右)中川真一/北海道大学通过了解4.5SHRNA的模块化结构,研究人员设计出了一种可编程剪接调节器(嵌合RNA),以诱导跳过感兴趣的目标外显子。他们设计的嵌合RNA可以成为基因工程的有用工具。中川说:"我们的发现表明,通过修改4.5SHRNA的传感器模块,有可能开发出只识别特定基因突变的新型基因治疗药物,这样我们就有可能阻止与疾病相关的有毒区域表达。"这项研究发表在《分子细胞》(MolecularCell)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1404415.htm手机版:https://m.cnbeta.com.tw/view/1404415.htm

封面图片

科学家利用CRISPR改变甘蔗叶片角度 使其变成超级作物

科学家利用CRISPR改变甘蔗叶片角度使其变成超级作物甘蔗是全球生物质产量最高的作物,占全球糖产量的80%和生物燃料产量的40%。其巨大的体积和对水和光的最佳利用,使其成为生产创新型可再生生物产品和生物燃料的理想来源。然而,甘蔗作为Saccharumofficinarum和Saccharumspontaneum的杂交种,其基因组是所有作物中最复杂的。这种复杂性意味着通过传统育种方法改良甘蔗具有挑战性。正因为如此,研究人员转而使用基因编辑工具,如CRISPR/Cas9系统,来精确地针对甘蔗基因组进行改良。埃莉诺-布兰特(EleanorBrant)收集叶片样本,用于基因编辑甘蔗的分子分析。图片来源:CharlesKeato佛罗里达大学先进生物能源和生物产品创新中心(CABBI)的一个研究小组在《植物生物技术期刊》上发表的新论文中,利用这种遗传复杂性的优势,使用CRISPR/Cas9系统对甘蔗的叶片角度进行了微调。这些基因调整使甘蔗能够捕捉到更多的阳光,从而增加了生物质的产量。这项工作支持能源部资助的CABBI生物能源研究中心的"植物即工厂"方法及其原料生产研究的主要目标--直接在甘蔗等植物的茎中合成生物燃料、生物产品和高价值分子。甘蔗基因组的复杂性部分归因于其高度冗余性:它的每个基因都有多个拷贝。因此,甘蔗植株表现出的表型通常取决于某个基因多个拷贝的累积表达。CRISPR/Cas9系统非常适合完成这项任务,因为它可以一次性编辑一个基因的几个或多个拷贝。BaskaranKannan在田间评估基因编辑甘蔗。图片来源:UzairKhan这项研究的重点是LIGULELESS1(即LG1),该基因在决定甘蔗叶片角度方面发挥着重要作用。叶片角度反过来又决定了植物能捕获多少光,而这对生物量的生产至关重要。由于甘蔗的高度冗余基因组包含40个LG1基因拷贝,研究人员能够通过编辑不同数量的LG1基因拷贝对叶片角度进行微调,从而根据编辑LG1基因拷贝的数量产生略微不同的叶片角度。"在一些经过LG1编辑的甘蔗中,我们只是突变了几个拷贝,"研究小组负责人、佛罗里达大学农学教授FredyAltpeter说。"通过这样做,我们能够调整叶片结构,直到找到能提高生物量产量的最佳角度"。实地试验结果及对未来的影响当研究人员在田间试验中种植甘蔗时,他们发现直立的叶片表型可以让更多的光线穿透冠层,从而提高了生物量产量。其中一个甘蔗品系的LG1拷贝数约为12%,叶片倾斜角度减少了56%,干生物量产量却增加了18%。通过优化甘蔗以捕捉更多光照,这些基因编辑可以提高生物量产量,而无需在田间添加更多肥料。除此之外,加深对复杂遗传学和基因组编辑的理解,有助于研究人员改进作物改良方法。Altpeter说:"这是第一篇描述CRISPR编辑甘蔗田间试验的同行评审出版物。这项工作也为编辑多倍体作物基因组提供了独特的机会,研究人员可以对特定性状进行微调。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1435739.htm手机版:https://m.cnbeta.com.tw/view/1435739.htm

封面图片

科学家发明基于SHERLOCK的基因工具快速而全面地口腔细菌

科学家发明基于SHERLOCK的基因工具快速而全面地口腔细菌来自马萨诸塞州福斯研究所的研究人员调整了基于基因编辑的CRISPR技术,在大约30分钟内识别出口腔细菌。口腔健康是整体健康的一个关键指标。以前的研究表明,口腔中的微生物在口腔疾病中起着作用,如龋齿和牙龈疾病。口腔健康与其他疾病之间也有关联,如心脏和呼吸系统疾病、糖尿病和癌症。基因编辑技术CRISPR已经为生物医学的许多进步做出了贡献。作为CRISPR的演变,SHERLOCK(特定高灵敏度酶报告器解锁)是最近才出现的一种诊断工具。它可以检测任何生物体或病原体的几乎任何DNA或RNA序列中编码的独特基因指纹。它通过编程特殊的CRISPR-Cas酶来检测特定的核酸(参与存储和表达基因组信息)。当核酸被识别时,CRISPR-Cas酶被激活,产生一个荧光信号。Cas9酶一般与CRISPR一起使用。在这里,利用SHERLOCK,研究人员使用Cas13a来针对四种已知导致口腔疾病的细菌。研究人员说,这是SHERLOCK首次被应用于检测口腔细菌。该研究的通讯作者BatbilegBor说:"只有当你知道哪些虫子在口腔里时,有针对性的治疗才有可能。目前,市场上现有的测试要么灵敏度低,要么需要在昂贵的集中式实验室进行分析。可能需要几个月的时间才能得到结果。所研究的检测工具解决了这两个问题,其特点是灵敏度高、成本低、结果迅速"。所需要的只是将唾液样本吐到一个管子里。唾液可以'原封不动'地进行检测,在检测前不需要进行清洗或处理。研究人员在30名患有已知医疗、牙科和牙龈疾病的成年人身上测试了他们的新型工具。他们发现,新型检测方法对细菌的存在非常敏感。Bor说:"这种检测方法非常敏感,它可以从可能含有口腔中常见的约200种细菌的样本中检测出少至几十个某种类型的细菌细胞。我们能够在未经处理的唾液中瞄准并检测特定的细菌,这意味着我们可以获得这种程度的敏感性和特异性,而不必额外处理唾液样本。"此外,研究人员用他们的检测工具瞄准了与各种癌症、消化道疾病、心血管疾病和神经退行性疾病相关的三种细菌。研究人员说,摒弃目前检测程序所需的复杂设备,意味着一个人的口腔健康可以在牙医办公室做检查或补牙时得到全面的检查。该研究的共同作者之一史文渊说:"一旦这个工具被完全开发出来,它将改变你的牙科经验。当你的牙齿被清洁时,牙医也可以为你提供与你的口腔和整体健康有关的所有生物信息。"该研究发表在《口腔微生物学杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1359697.htm手机版:https://m.cnbeta.com.tw/view/1359697.htm

封面图片

科学家利用CRISPR基因编辑消除了癌细胞中多余的染色体

科学家利用CRISPR基因编辑消除了癌细胞中多余的染色体具有额外染色体的细胞与癌症的发展有关,但一项新的研究发现这也可能是它们的弱点该研究的高级作者JasonSheltzer说:"长期以来,我们可以观察到非整倍体,但不能操纵它。我们只是没有合适的工具。但在这项研究中,我们利用基因工程技术CRISPR开发了一种新的方法来消除癌细胞中的整个染色体,这是一个重要的技术进步。能够以这种方式操纵非整倍体染色体,将使我们更深入地了解它们的功能。"首先,该团队专注于一种非整倍体,即细胞在1号染色体上获得一个被称为"q臂"的结构的第三个拷贝。这种错误从早期阶段就在多种癌症类型中发现,并与疾病的发展有关。研究人员开发了一种工具,他们称之为使用CRISPR靶向技术恢复非整倍体细胞中的二分裂(ReDACT),当他们用它来消除这些额外的染色体时,他们发现这些细胞失去了形成恶性肿瘤的能力。经过仔细检查,他们发现了一种机制,即非整倍体可能会促进癌症的发展--刺激癌症生长的特定基因被编码在三条染色体上,而不是通常的两条。接下来,研究小组测试了这种机制是否可以作为癌症的治疗目标加以利用。一个被称为UCK2的基因先前已被发现对某些药物敏感,这里的研究人员发现,这使得具有1号染色体额外拷贝的细胞(因此是UCK2的第三个拷贝)对这些药物更加敏感。研究小组将正常细胞和非整倍体细胞混合成批,后者占细胞的20%。他们发现,在没有干预的情况下,非整倍体细胞将在9天后增长到占批次的75%。但当用针对UCK2的药物治疗时,非整倍体细胞在9天后下降到仅占该批细胞的4%。Sheltzer说:"这告诉我们,非整倍体可以作为癌症的一个治疗目标。几乎所有的癌症都是非整倍体,所以如果你有某种方法选择性地针对那些非整倍体细胞,理论上这可能是一种针对癌症的好方法,同时对正常的、非癌症的组织影响最小。"当然,这项研究仍然处于非常早期的阶段,到目前为止只在培养的细胞中进行了测试。但这是一个耐人寻味的想法,最终可能开启新的癌症治疗方法,而且该团队现在正在努力转向动物测试。这项研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1370003.htm手机版:https://m.cnbeta.com.tw/view/1370003.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人