研究人员首次看到神秘的土壤病毒基因

研究人员首次看到神秘的土壤病毒基因土壤病毒的特点是似乎有代谢作用的基因,但它们不是正常病毒复制所必需的。这些基因被称为辅助代谢基因(AMGs),它们产生蛋白质,其中一些是具有各种作用的酶。科学家们以前曾猜测某些AMG蛋白是否在关键的土壤过程中发挥作用,如碳循环。为了进一步了解土壤中的AMGs,研究人员确定了由特定AMG表达的蛋白质的原子结构。研究人员利用能源部(DOE)SLAC国家加速器实验室的斯坦福同步辐射光源(SSRL)12-2光束线产生的高亮度X射线来照射脆弱的结晶蛋白质样品。X射线击中了晶体样品中的蛋白质,暴露了它们的分子结构以及围绕其组成的一些谜团。与许多病毒基因一样,AMGs并不帮助病毒复制。相反,它们对各种蛋白质进行编码,每一种都有自己的预测功能。被表达的AMG是一种推定的酶,在土壤如何处理和循环生物圈中的碳方面起着关键作用。SSRL高级研究员和共同作者克莱德-史密斯说:"我们看到了病毒蛋白中每个原子的位置,这有助于我们弄清楚它的功能。我们惊讶地看到,这种蛋白质与相关的细菌和真菌酶家族的已知原子结构相似,但也包含完全新的部分"。美国能源部西北太平洋国家实验室(PNNL)首席科学家兼共同作者JanetK.Jansson说,详细的原子结构是前所未有的,并首次揭示了这种新型酶的潜在机制,它可能在土壤生态学中发挥重要作用。Jansson说:"我们与SLAC的合作使我们能够破译土壤病毒所执行的以前未知的功能。"来自SSRL、PNNL和美国能源部劳伦斯伯克利国家实验室的联合基因组研究所(JGI)的研究团队最近在《自然-通讯》上发表了他们的成果。分解甲壳素研究人员认为,该研究中的病毒AMG编码了一种对甲壳素进行降解反应的酶。甲壳素是地球上仅次于纤维素的第二大碳生物聚合物,是昆虫外骨骼和大多数真菌细胞壁的一部分。该研究中的病毒AMG被称为壳聚糖酶蛋白,从序列分析中被确定为糖基水解酶GH75家族的成员。这种蛋白质的作用可能就像土壤的花园锄头--也就是说,一种有助于为蔬菜、树木、花卉和所有其他种类的生命准备土壤的工具。捕捉壳聚糖酶蛋白的原子结构需要从晶体样品中获取5000多张图像。将这些图像拼凑在一起后发现,该蛋白的部分结构与糖基水解酶GH45家族中已知的一组碳水化合物代谢酶相似。然而,壳聚糖酶蛋白含有其他分子片段,这些分子片段看起来不像GH45中的分子,也不像任何其他已知的蛋白质结构,这意味着它在土壤循环中的作用仍有待进一步研究,史密斯说。这种酶有一部分是全新的、新颖的。史密斯说:"作为一个结构生物学家,这就是让我感到兴奋的地方--看到我们以前没有见过的东西,然后试图弄清楚它的作用可能是什么。"未来的研究可能会使人们了解为什么AMGs首先会存在,因为它们不会帮助病毒复制。此外,研究人员可以更多地了解土壤病毒携带的其他AMGs,以及它们是否在土壤生态系统中发挥着功能性作用。"这一发现带出的一个大问题是,'土壤中的什么需要甲壳素中的碳?"史密斯说。"像这样的问题的答案将导致对土壤中众多微生物的相互作用、营养物质和基本分子的运动以及土壤的整体健康有更深的了解。"...PC版:https://www.cnbeta.com.tw/articles/soft/1332571.htm手机版:https://m.cnbeta.com.tw/view/1332571.htm

相关推荐

封面图片

研究人员发现引发COVID-19的冠状病毒的关键"弱点"

研究人员发现引发COVID-19的冠状病毒的关键"弱点"英属哥伦比亚大学的研究人员发现了SARS-CoV-2病毒的所有主要变体的一个关键漏洞,包括新发现的BA.1和BA.2Omicron亚变体。中和抗体可以针对这一弱点,有可能为对各种变体普遍有效的治疗打开大门。冷冻电子显微镜显示了VHAb6抗体片段(红色)如何附着在SARS-CoV-2尖峰蛋白(灰色)的脆弱部位,以阻止病毒与人类ACE2细胞受体(蓝色)结合。这项研究发表在《自然-通讯》杂志上,它使用低温电子显微镜(cryo-EM)来确定病毒尖峰蛋白上的脆弱区域或表位的原子结构。该研究还报告了一个VHAb6抗体片段,它能与该位置结合并中和每一个主要变体。UBC大学医学院教授、该研究的资深作者SriramSubramaniam博士说:"这是一种高度适应性的病毒,已经进化到可以逃避大多数现有的抗体治疗,以及疫苗和自然感染赋予的大部分免疫力。这项研究揭示了一个弱点,这个弱点在不同的变体中基本没有变化,可以被一个抗体片段中和。它为设计有可能帮助许多脆弱人群的泛变种治疗方法创造了条件。"识别COVID-19的万能钥匙我们的身体自然地制造抗体来对抗感染,但它们也可能在实验室中被制造出来,并作为一种治疗方法给病人使用。尽管已经为COVID-19创造了一些抗体治疗方法,但面对像Omicron这样高度变异的变体,它们的疗效已经下降。"抗体以一种非常具体的方式附着在病毒上,就像一把钥匙进入一把锁。但当病毒发生变异时,钥匙就不再适用了,"Subramaniam博士说。"我们一直在寻找万能钥匙--即使在广泛的变异后仍能继续中和病毒的抗体。这篇新论文将抗体片段VHAb6确定为"万能钥匙",已经发现它对Alpha、Beta、Gamma、Delta、Kappa、Epsilon和Omicron变种有效。通过与尖峰蛋白上的表位结合并阻止SARS-CoV-2感染人体细胞,该片段可中和病毒。这一发现是苏布拉马尼亚姆博士的团队与匹兹堡大学MitkoDimitrov和WeiLi博士领导的同事之间长期而富有成效的合作的最新成果。匹兹堡的团队一直在筛选大型抗体库并测试它们对COVID-19的有效性,而UBC的团队一直在使用低温电镜研究尖峰蛋白的分子结构和特征。专注于COVID-19的薄弱点UBC团队因其在使用低温电镜以原子分辨率观察蛋白质-蛋白质和蛋白质-抗体相互作用的专业知识而闻名于世。在今年早些时候发表在《科学》上的另一篇论文中,他们首次报告了Omicron尖峰蛋白和人类细胞受体ACE2之间的接触区结构,为Omicron增强的病毒适应性提供了分子解释。通过绘制每个尖峰蛋白的分子结构图,该团队一直在寻找可能为新疗法提供信息的脆弱区域。苏布拉马尼亚姆博士说:"我们在这篇论文中描述的表位大多远离突变的热点,这就是为什么它的能力在不同的变体中得以保留。现在我们已经详细描述了这个部位的结构,它开启了一个全新的治疗可能性领域。"Subramaniam博士说,这个关键的弱点现在可以被制药商利用,而且由于该部位相对无突变,所产生的治疗方法可以对现有的,甚至是未来的变种有效。PC版:https://www.cnbeta.com/articles/soft/1311789.htm手机版:https://m.cnbeta.com/view/1311789.htm

封面图片

永不真正离去的病毒 - 科学家揭开疱疹长期潜伏人体的伎俩

永不真正离去的病毒-科学家揭开疱疹长期潜伏人体的伎俩疱疹病毒病毒横截面(中央)和未切片(右上角)模型。病毒表面的糖蛋白(红色)与膜(透明)融为一体。膜上有各种病毒保护蛋白(灰色)和同化的宿主蛋白(粉红色)。病毒外壳蛋白UL32用黄色标出。病毒中心是DNA(未显示),由核壳(蓝色)包裹。图片来源:YuehengZhou,AbseaBiotechnology疱疹病毒之所以如此成功,是因为它们对人类有着出色的适应能力,并能采取策略躲避我们的免疫系统。它们伪装的关键是蛋白质,这些蛋白质会欺骗受感染的细胞,让它们以为自己没有受到威胁。例如,众所周知,每一种疱疹病毒都有一个强大的蛋白质组,即大量的这些蛋白质,它们高度适应宿主,使病毒能够在感染后立即进行高效复制。复杂的蛋白质组还能确保在已感染的细胞中形成多层颗粒。这些新形成的病毒(也称为病毒粒子)含有大量病毒蛋白和宿主蛋白。颗粒中心是病毒DNA,由核壳包裹。在核壳周围还形成了一层由许多其他蛋白质组成的保护膜。颗粒在病毒再活化过程中发挥作用无论以何种方式重新激活病毒,颗粒都是使病毒在体内再次复制和系统传播的关键。因此,它们是经过长期休眠(潜伏)后疾病爆发的核心因素。然而,人们对这些颗粒的内部组织,尤其是外壳内蛋白质与蛋白质之间的相互作用知之甚少。因此,莱布尼茨分子药理学研究所(FMP)和柏林夏里特大学的研究人员仔细研究了这些颗粒,特别是人类巨细胞病毒(HCMV)。巨细胞病毒在人群中的发病率很高,而且非常危险,尤其是对接受移植手术的人和通过母体感染的胎儿。尽管进行了深入研究,但目前还没有一种耐受性良好的抗病毒疗法可以有效控制甚至消除病毒。目前也没有针对这种病毒的疫苗。新绘制的地图指出哪些蛋白质相互影响在目前的工作中,刘凡(FMP)和LüderWiebusch(Charité)领导的研究小组首次绘制了HCMV颗粒内病毒和宿主细胞蛋白之间空间相互作用的详细地图。研究发现,宿主细胞的某些蛋白质会被病毒蛋白质招募,并在病毒复制过程中发挥作用。例如,一种名为UL32的病毒蛋白会将一种细胞蛋白(蛋白磷酸酶PP1)招募到颗粒中,以避免与其他不需要的宿主细胞蛋白结合。FMP病毒学家鲍里斯-博格丹诺(BorisBogdanow)说:"HCMV本身没有像PP1这样的磷酸酶,所以你可以看到病毒利用了宿主细胞的某些蛋白质来高效复制。"为了逐层研究完整的HCMV颗粒中不同蛋白质之间的相互作用,研究人员使用了一种叫做交联质谱的技术。FMP的质谱分析专家刘凡强调说:"这种方法还能让我们得出蛋白质身份的结论。"但交联法的特别之处和独特之处在于,我们可以看到哪些蛋白质相互之间发生了作用,以及在哪里发生作用"。这种创新技术从未被用于绘制疱疹病毒颗粒内相互作用的空间组织图。有了这些数据,MohsenSadeghi随后在柏林联邦大学创建了HCMV粒子的计算机模型。该虚拟模型可以模拟粒子内的每种蛋白质,并以生动的方式将生物物理过程可视化。鲍里斯-博格丹诺(BorisBogdanow)对这一结果进行了归类:"已确定的蛋白质与蛋白质之间的相互作用对于更好地理解HCMV复杂的生命周期非常重要。反过来,这对于找到针对HCMV的候选抗病毒药物也很重要。"...PC版:https://www.cnbeta.com.tw/articles/soft/1376455.htm手机版:https://m.cnbeta.com.tw/view/1376455.htm

封面图片

研究人员设计“纳米陷阱” 提供有关蛋白质团块的新见解

研究人员设计“纳米陷阱”提供有关蛋白质团块的新见解图片显示的是蛋白质捕获器,它由纳米级腔室和聚合物组成,在上方形成门。这些"门"通过将温度升高约10度来打开。然后,聚合物会改变形状,变成更紧凑的状态,这样蛋白质就可以进出了。资料来源:查尔默斯理工大学朱莉娅-耶尔勒巴克领导该研究项目的查尔姆斯大学教授安德烈亚斯-达林(AndreasDahlin)说:"我们相信,我们的方法具有巨大的潜力,可以加深人们对许多不同疾病的早期和危险过程的了解,并最终帮助人们了解如何用药物来对抗这些疾病。"在人体内形成团块的蛋白质会导致多种疾病,包括渐冻人症、老年痴呆症和帕金森症。如果能更好地了解凝块是如何形成的,就能找到有效的方法在早期将其溶解,甚至完全防止其形成。AndreasDahlin,查尔姆斯理工大学化学与化学工程系教授。图片来源:查尔默斯理工大学MikaelTerfors如今,有各种技术可以研究过程的后期阶段,即团块变大并形成长链的阶段,但直到现在,还很难跟踪早期的发展,因为那时它们还非常小。现在,这些新的捕集器可以帮助解决这个问题。可长时间进行高浓度研究研究人员将他们的工作描述为世界上最小的闸门,只需按下按钮就能打开和关闭。这些门成为陷阱,将蛋白质锁在纳米级的腔室中。蛋白质无法逃脱,从而将在这一水平上观察蛋白质的时间从一毫秒延长到至少一小时。这种新方法还可以在很小的体积内封闭几百个蛋白质,这对进一步了解情况非常重要。"我们希望看到并更好地理解的团块由数百个蛋白质组成,因此如果我们要研究它们,就必须能够捕获如此大量的蛋白质。"AndreasDahlin说:"小体积内的高浓度意味着蛋白质会自然地相互碰撞,这是我们新方法的一大优势。"为了将这种技术用于研究特定疾病的病程,还需要继续开发这种方法。"捕获器需要进行调整,以吸引与你感兴趣的特定疾病相关的蛋白质。"AndreasDahlin说:"我们现在的工作是规划哪些蛋白质最适合研究。"新陷阱的工作原理研究人员开发的捕集器由所谓的聚合物刷组成,位于纳米级腔室的口部。要研究的蛋白质包含在液体溶液中,经过特殊化学处理后被吸引到腔室壁上。当闸门关闭时,蛋白质就会脱离腔壁,开始相互移动。在捕集器中,您可以研究单个的蛋白质团块,这比同时研究许多蛋白质团块能提供更多信息。例如,团块可能由不同的机制形成,具有不同的大小和结构。只有逐个分析才能观察到这些差异。实际上,蛋白质可以在捕集器中保留几乎任意长的时间,但目前,时间受到化学标记保留时间的限制。在这项研究中,研究人员成功地将可见性保持了一个小时。...PC版:https://www.cnbeta.com.tw/articles/soft/1398913.htm手机版:https://m.cnbeta.com.tw/view/1398913.htm

封面图片

研究人员发现了新冠病毒用来入侵细胞的新方法

研究人员发现了新冠病毒用来入侵细胞的新方法渥太华大学研究团队发现了SARS-CoV-2的一个新的病毒入口,并表明它可能能够利用蛋白质来感染更广泛的细胞。在正在进行的COVID-19大流行中,科学界许多紧迫的研究工作之一集中在冠状病毒设法进入宿主细胞的方式。PC版:https://www.cnbeta.com.tw/articles/soft/1336505.htm手机版:https://m.cnbeta.com.tw/view/1336505.htm

封面图片

研究人员发现了M蛋白如何成为SARS-CoV-2病毒球形结构的关键

研究人员发现了M蛋白如何成为SARS-CoV-2病毒球形结构的关键M蛋白的创新研究由加州大学河滨分校的物理学家领导的一个研究小组设计了一种制造大量M蛋白的新方法,并描述了该蛋白与细胞膜(包膜或“皮肤”)的物理相互作用。病毒。该团队的理论建模和模拟显示了这些相互作用如何可能导致病毒自我组装。研究人员在今天发表在《科学进展》上的论文中报告说,当与SARS-CoV-2上的刺突蛋白相邻的M蛋白卡在膜中时,它会通过局部减少膜厚度来诱导膜弯曲。这种曲率的诱导导致了SARS-CoV-2的球形。从左到右:RoyaZandi、ThomasKuhlman和UmarMohideen。图片来源:加州大学河滨分校库尔曼实验室“如果我们能够更好地了解病毒如何自我组装,那么原则上我们就可以想出方法来阻止这一过程并控制病毒的传播,”物理学和天文学助理教授托马斯·E·库尔曼(ThomasE.Kuhlman)说。领导了该研究项目。“M蛋白之前一直抵制任何类型的表征,因为它很难制造。”Kuhlman和他的同事通过使用大肠杆菌作为“工厂”来大量制造M蛋白,从而克服了这一困难。他解释说,虽然大肠杆菌可以产生大量的M蛋白,但这些蛋白质往往会在大肠杆菌细胞中聚集在一起,最终杀死它们。为了规避这一挑战,研究人员诱导大肠杆菌细胞产生小泛素相关修饰蛋白(SUMO)以及M蛋白。突破性技术“在我们的实验中,当大肠杆菌产生M蛋白时,它同时产生SUMO,”Kuhlman说。“M蛋白与SUMO蛋白融合,从而防止M蛋白彼此粘连。SUMO蛋白相对容易通过另一种蛋白简单地切断来去除。M蛋白由此被纯化并从SUMO中分离出来。”这项工作为驱动SARS-CoV-2病毒组装的机制提供了基本见解。“由于M蛋白也是其他冠状病毒的组成部分,我们的研究结果提供了有用的见解,可以增强我们的理解,并有可能不仅在SARS-CoV-2中,而且在其他致病性冠状病毒中干预病毒形成。”未来发展方向接下来,研究人员计划研究M蛋白与其他SARS-CoV-2蛋白的相互作用,以潜在地破坏这些与药物的相互作用。Kuhlman与加州大学河滨分校的物理学家RoyaZandi和UmarMohideen一起参与了这项研究。Kuhlman负责制造M蛋白。Mohideen是一位杰出的物理学和天文学教授,他使用原子力显微镜和低温电子显微镜来测量M蛋白如何与膜相互作用。Zandi是病毒组装专家、物理学和天文学教授,他开发了M蛋白如何相互作用以及与膜相互作用的模拟。该论文的其他合著者包括加州大学河滨分校的YuanzhongZhu、SiyuLi、MichaelWorcester、SaraAnbir、PratyashaMishra;以及加州大学默塞德分校的JosephMcTiernan、MichaelE.Colvin和AjayGopinathan。共同第一作者张和安比尔对这项工作做出了同等贡献。该研究得到了加州大学总统办公室的资助,旨在调查COVID-19病毒如何自我组装。该研究论文的标题是“脂质双层内SARS-CoV-2膜蛋白的合成、插入和表征”。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1423853.htm手机版:https://m.cnbeta.com.tw/view/1423853.htm

封面图片

研究人员发现了一种控制梳状水母独特运动的蛋白质

研究人员发现了一种控制梳状水母独特运动的蛋白质栉水母,从海洋表面到海洋深处都可以找到。这些海洋捕食者的特征是沿着它们的侧面有八条明亮的、彩虹色的波纹带。这些带子是由一排排梳子一样排列的薄片组成的,上面有数以万计的被称为纤毛的微小头发状结构。梳状水母通过这些梳状板的跳动而在水中推进。纤毛的同步波浪式运动使周围的光线散射开来,从而形成一道色彩斑斓的彩虹。作者KazuoInaba教授说:"纤毛被捆绑在一起的结构被称为隔层膜(CL)。这些薄片被认为对纤毛的定向和同步运动很重要。在以前的一项研究中,我们发现了一种叫做CTENO64的蛋白质,它是纤毛定向所需要的,但它只在CL的一个部分被发现。我们仍然没有完全理解梳状板的整体结构。"梳状板被分为两个不同的区间:近端和远端。有了CTENO64被发现在近端区间的知识,为了更好地了解CL的分子组成,研究人员检查了整个梳状板上发现的整个蛋白质。他们确定了那些既丰富又只在梳状板细胞中显示基因表达的蛋白质。搜索工作阐明了21种蛋白质,包括一种新检测到的名为CTENO189的蛋白质,它存在于CL的一个与CTENO64不同的区域。"当我们敲除这个新发现的蛋白的基因时,CL在梳状板的远端区域根本没有出现,"Inaba教授解释说。"对结构的仔细观察表明,虽然梳状板形成正常,但纤毛处于混乱状态,正常的波状运动模式消失了。"这些研究共同表明,CL的两个不同区域在控制梳状果冻的运动方面发挥着不同的作用。近端CL提供了一个强大的建筑基础,而远端CL确保纤毛之间实现弹性连接。在CL中发现的这些蛋白质共同维持着涟漪状的运动,推动着梳状水母在其海洋环境中运动。...PC版:https://www.cnbeta.com.tw/articles/soft/1334459.htm手机版:https://m.cnbeta.com.tw/view/1334459.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人