新发现的抗生素Dynobactin可杀死危险的耐药细菌

新发现的抗生素Dynobactin可杀死危险的耐药细菌世卫组织将对抗生素产生抗药性的耐药细菌数量稳步增长称为"无声的大流行"。由于近几十年来没有新的抗菌药物被引入市场,情况变得更糟。即使是现在,也不是所有的感染都能得到适当的治疗,病人仍然面临着常规干预措施带来的伤害风险。人类迫切需要新的活性物质来阻止耐抗生素细菌的传播。最近,由波士顿东北大学的研究人员和巴塞尔大学生物中心的塞巴斯蒂安-希勒教授领导的团队取得了一项重大发现。这项研究是国家研究能力中心(NCCR)"抗击"项目的一个组成部分,其结果最近发表在《自然-微生物学》上。顽强的对手研究人员通过计算筛选方法发现了新的抗生素Dynobactin。这种化合物可以杀死革兰氏阴性细菌,其中包括许多危险的和有抗性的病原体。"希勒说:"寻找针对这组细菌的抗生素远非小事一桩。它们被它们的双膜很好地保护着,因此可以提供攻击的机会很少。而且在它们数百万年的进化过程中,这些细菌已经找到了许多使抗生素无害化的方法"。就在去年,希勒的团队破译了最近发现的肽类抗生素Darobactin的作用方式。获得的知识被整合到新化合物的筛选过程中。研究人员利用了许多细菌产生抗生素肽以相互对抗的事实。而且,这些肽与天然物质不同,是在细菌基因组中编码的。致命的效果"这种肽类抗生素的基因有一个共同的特点,"共同第一作者SeyedM.Modaresi博士解释说。"根据这一特征,计算机系统地筛选了那些产生这种肽的细菌的整个基因组。这就是我们识别Dynobactin的方式"。在他们的研究中,作者证明了这种新的化合物是非常有效的。由抗性细菌引起的危及生命的败血症的小鼠通过服用Dynobactin,在严重的感染中幸存下来。通过结合不同的方法,研究人员已经能够解决Dynobactin的结构以及作用机制。这种肽能阻断细菌膜蛋白BamA,它在形成和维持外部保护性细菌包膜方面发挥着重要作用。"Dynobactin像一个塞子一样从外面粘住BamA,阻止它履行其职责,细菌就会因此死亡,"莫达里西说。"尽管Dynobactin与已经知道的Darobactin几乎没有任何化学相似之处,但它在细菌表面有相同的目标。这一点是我们一开始没有想到的。"对抗生素研究的推动然而,在分子水平上,科学家们已经发现Dynobactin与BamA的相互作用不同于Darobactin。通过结合两者的某些化学特征,可以进一步改进和优化潜在药物。这是通往有效药物道路上的重要一步。"基于计算机的筛选将为识别急需的抗生素提供新的动力,"希勒说。"在未来,我们希望扩大我们的搜索范围,研究更多的肽是否适合作为抗菌药物"。...PC版:https://www.cnbeta.com.tw/articles/soft/1332961.htm手机版:https://m.cnbeta.com.tw/view/1332961.htm

相关推荐

封面图片

科学家开发出抗击耐药细菌的新型抗生素

科学家开发出抗击耐药细菌的新型抗生素苏黎世大学核磁共振设施负责人、化学家奥利弗-泽尔贝(OliverZerbe)说:"不幸的是,新抗生素的研发渠道相当空虚。自从上一种针对以前未使用过的靶分子的抗生素获得批准以来,已经过去了50多年。"在最近发表在《科学进展》(ScienceAdvances)上的一项研究中,泽尔贝现在讨论了一类高效抗生素的开发情况,这类抗生素能以新颖的方式对抗革兰氏阴性细菌。世卫组织将这类细菌列为极度危险的细菌。这类细菌由于具有双层细胞膜,因此抗药性特别强,例如耐碳青霉烯类肠杆菌。除了乌兹赫里大学的团队外,制药公司SpexisAG的研究人员也参与了这项由Innosuisse共同资助的合作研究。研究人员的研究起点是一种名为比他汀的天然肽,昆虫用它来抵御感染。比他汀能破坏革兰氏阴性细菌外膜和内膜之间重要的脂多糖运输桥梁,几年前,现已退休的哈佛大学教授约翰-罗宾逊(JohnRobinson)在一项研究中揭示了这一点。结果,这些代谢物在细胞内积聚,导致细菌死亡。然而,比他汀并不适合用作抗生素药物,原因之一是它的效力较低,而且细菌很快就会对它产生抗药性。因此,研究人员改变了比他汀的化学结构,以增强这种肽的特性。泽尔贝说:"要做到这一点,结构分析至关重要。为此,结构分析至关重要。"他的团队合成了细菌转运桥的各个组成部分,然后利用核磁共振(NMR)观察比他汀与转运桥结合的位置和方式,以及如何破坏转运桥。利用这些信息,SpexisAG公司的研究人员计划进行必要的化学修饰,以增强多肽的抗菌效果。除其他外,还进一步进行了突变,以提高分子的稳定性。合成肽随后在感染细菌的小鼠身上进行了测试,结果非常出色。泽尔贝说:"事实证明,这种新型抗生素非常有效,尤其是在治疗肺部感染方面。它们对耐碳青霉烯类肠杆菌也非常有效,而大多数其他抗生素在这方面都失效了"。此外,新开发的肽类药物对肾脏没有毒性或危害,而且在血液中长期保持稳定--所有这些特性都是获得药物批准的必要条件。不过,在开始首次人体试验之前,还需要进一步的临床前研究。在选择最有前景的多肽进行研究时,研究人员确保它们也能有效对抗那些已经对比萨丁产生抗药性的细菌。泽尔贝说:"我们相信,这将大大减缓抗菌药耐药性的产生。我们现在有望获得一类新的抗生素,这种抗生素对抗药性细菌也同样有效"。...PC版:https://www.cnbeta.com.tw/articles/soft/1372775.htm手机版:https://m.cnbeta.com.tw/view/1372775.htm

封面图片

科学家发现新抗生素类别 可有效对抗耐药细菌

科学家发现新抗生素类别可有效对抗耐药细菌抗生素是现代医学的基础,在上个世纪极大地改善了全世界人民的生活质量。如今,我们往往认为抗生素是理所当然的,并严重依赖抗生素来治疗或预防细菌感染,例如,在癌症治疗、侵入性手术和移植过程中,以及在母亲和早产儿身上,抗生素可以降低感染风险。然而,全球抗生素耐药性的增加日益威胁着抗生素的有效性。为了确保未来能够获得有效的抗生素,开发不存在抗药性的新型疗法至关重要。乌普萨拉大学的研究人员最近在《美国国家科学院院刊》(ProceedingsoftheNationalAcademyofSciencesoftheUSA)上发表了他们的研究成果,介绍了作为多国联合体的一部分而开发的一类新型抗生素。他们描述的这类化合物以一种名为LpxH的蛋白质为靶标,这种蛋白质是革兰氏阴性细菌合成其最外层保护层(即脂多糖)的途径。并非所有细菌都会产生这一层,但那些会产生这一层的细菌包括世界卫生组织确定为最需要开发新型疗法的生物,其中包括已经对现有抗生素产生抗药性的大肠埃希菌和肺炎克雷伯菌。研究人员能够证明,这种新型抗生素对耐多药细菌具有很强的活性,并能治疗小鼠模型中的血液感染,从而证明了这种抗生素的前景。重要的是,由于这一类化合物是全新的,而LpxH蛋白尚未被用作抗生素的靶点,因此这一类化合物不会产生抗药性。这与目前临床开发中的许多"同类"抗生素形成了鲜明对比。虽然目前的研究结果很有希望,但在这类化合物进入临床试验之前,还需要做大量的工作。DOI:10.1073/pnas.2317274121编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1428294.htm手机版:https://m.cnbeta.com.tw/view/1428294.htm

封面图片

科学家发现应对抗生素耐药性细菌的新武器

科学家发现应对抗生素耐药性细菌的新武器耐抗生素病原体的一个例子是肺炎克雷伯氏菌,这是一种在医院里常见的细菌,以其毒性著称。如果没有有效的治疗方案,我们可能会看到肺炎和沙门氏菌等疾病的重新出现,这些疾病曾经很容易用抗生素治疗。日内瓦大学(UNIGE)的研究人员发现,乙去氧尿啶(edoxudine),一种在20世纪60年代开发的抗疱疹分子,可以破坏克雷伯氏菌的保护性表面,使其更容易被免疫细胞所消灭。研究人员的发现最近发表在PLOSONE杂志上。肺炎克雷伯氏菌是一种可以引起呼吸道、尿道和身体其他部位严重感染的细菌。肺炎克雷伯氏菌导致许多呼吸道、肠道和泌尿道感染。由于它对大多数常见的抗生素有抗药性,而且毒力很强,它的一些菌株对40%到50%的受感染者来说是致命的。现在迫切需要开发新的治疗分子来对付它。它是医院获得性感染的一个常见原因,对免疫系统较弱的人特别危险。肺炎克雷伯氏菌对许多抗生素具有抗药性,使其难以治疗。领导这项研究的UNIGE医学院细胞生理和代谢系教授PierreCosson解释说:"自20世纪30年代以来,医学一直依赖抗生素来摆脱致病细菌。但其他方法也是可能的,其中包括试图削弱细菌的防御系统,使它们无法再逃避免疫系统。这一途径似乎更有希望,因为肺炎克雷伯氏菌的毒性主要源于其逃避免疫细胞攻击的能力。"为了确定细菌是否被削弱,UNIGE的科学家们使用了一个具有令人惊讶的特点的实验模型:变形虫Dictyostelium。这种单细胞生物通过捕捉和摄取细菌为食,使用与免疫细胞用来杀死病原体的机制相同。"我们对这种变形虫进行了基因改造,以便它能够告诉我们它所遇到的细菌是否具有毒性。皮埃尔-科森解释说:"这个非常简单的系统然后使我们能够测试数以千计的分子,并确定那些能够降低细菌毒性的分子。"削弱细菌而不杀死它们开发一种药物是一个漫长而昂贵的过程,没有结果的保证。因此,UNIGE的科学家们选择了一种更快、更安全的策略:审查现有药物以确定可能的新治疗适应症。研究小组评估了已经上市的数百种药物对肺炎克雷伯氏菌的影响,这些药物有广泛的治疗适应症。一种为防治疱疹而开发的药物被证明是特别有希望的。通过改变保护细菌不受外部环境影响的表面层,这种药理学产品使其变得脆弱。研究人员说:"与抗生素不同,乙去氧尿啶不会杀死细菌,这限制了产生抗药性的风险,这是这种抗病毒策略的一个主要优势。"尽管这种治疗方法在人类身上的有效性还有待证实,但这项研究的结果令人鼓舞:乙去氧尿啶甚至对肺炎克雷伯氏菌的最强毒株也有作用,而且其浓度比治疗疱疹的浓度低。皮埃尔-科森总结说:"充分削弱细菌而不杀死它们是一种微妙的策略,但从短期和长期来看,它可能被证明是一种胜利。"...PC版:https://www.cnbeta.com.tw/articles/soft/1338061.htm手机版:https://m.cnbeta.com.tw/view/1338061.htm

封面图片

人工智能发现新的杀灭超级细菌的抗生素

人工智能发现新的杀灭超级细菌的抗生素每年有超过100万人死于抗生素治疗的耐药感染,可以感染伤口并引起肺炎的鲍曼不动杆菌是最受关注的细菌之一,它是世卫组织确定为"严重"威胁的三种超级细菌之一。它可以在表面和医疗设备上生存,对几乎所有抗生素都有耐药性的情况非常普遍。为了找到一种新的抗生素,研究人员首先必须训练人工智能。他们使用了数千种已知精确化学结构的药物,并在鲍曼不动杆菌上进行人工测试,试验哪种药物可以减慢或杀死它。当这些数据被输入到AI中,AI可以识别出有效的化学特征。然后AI进入到6680种有效性未知的化合物清单,花了一个半小时生成了一份候选名单。结果研究人员测试了240种,发现了9种潜在的抗生素,其中之一就是非常有效的抗生素abaucin。实验表明它可以治疗小鼠感染的伤口,并能够杀死患者的鲍曼不动杆菌样本。奇怪的是,这种实验性抗生素对其他种类的细菌没有影响,而且只对鲍曼不动杆菌有效。——频道:@TestFlightCN

封面图片

细菌迅速适应 新型抗生素也失去效力

细菌迅速适应新型抗生素也失去效力众所周知,阿比西丁能高效杀死细菌,包括超级细菌大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus或"GoldenStaph"),这种相对较新的抗生素被誉为抗生素耐药性问题的答案。然而,柏林自由大学(FreieUniversitätBerlin)研究人员的一项新研究发现,尽管这种抗生素很新,但常见的问题细菌已经通过基因扩增机制对阿霉素产生了抗药性。阿比西丁的作用模式与其他抗生素不同。它被称为肽抗生素,能抑制DNA回旋酶,这是帮助细菌进行DNA复制的重要酶。DNA回旋酶存在于细菌中,但不存在于人类中,因此它是一个很好的靶点。研究人员使用了一套广泛的工具来研究细菌对阿比西丁产生抗药性的机制,包括RNA测序、蛋白质分析、X射线晶体学和分子建模。他们发现,两种常见的人类感染相关细菌--鼠伤寒沙门氏菌和大肠杆菌--在接触浓度越来越高的涕灭威药物后产生了抗药性。他们发现,产生抗药性的原因是细菌细胞中STM3175基因的拷贝数增加了,随着细胞的繁殖,该基因的拷贝数在连续几代中不断扩大,产生了高达1000倍的抗药性。该基因编码一种能与阿比西丁相互作用的蛋白质,保护细菌免受抗生素的杀灭。研究人员还发现,相同的抗药性机制在无害细菌和致病细菌中都很普遍,包括可导致危及生命的伤口感染的弧菌和可导致肺炎和手术后血液感染的铜绿假单胞菌。抗生素耐药性是公共医疗保健领域日益关注的问题,据世界卫生组织(WHO)称,它是全球健康、粮食安全和发展面临的最大威胁之一。据《柳叶刀》杂志2019年的一篇文章报道,当年有127万人死于细菌抗生素耐药性。目前的研究让人们更好地了解了细菌对抗生素产生耐药性的内在机制;不幸的是,这项研究涉及的是一种相对较新的药物,这种药物被吹捧为解决上述耐药性的手段。不过,这项研究的发现可以为开发基于阿比西丁的抗生素疗法提供参考。该研究发表在《PLOSBiology》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1376913.htm手机版:https://m.cnbeta.com.tw/view/1376913.htm

封面图片

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌

无糖食品中的人工甜味剂被发现可以杀死耐抗生素的细菌这些讨厌的细菌是近年来医务人员最恼火的一些问题。这些细菌是鲍曼不动杆菌和铜绿假单胞菌,分别以引发肺炎和败血症而闻名。它们一直对抗生素有抗药性,使它们几乎无法治疗。这些耐抗生素的细菌一直是如此致命,以至于世界卫生组织将它们加入了"优先病原体"名单,这是一份急需新的抗生素治疗的病原体名单,因为它们对免疫系统受损的人构成了风险。不过,有了这个新发现,科学家们可能最终在这场持续的战斗中获得了优势。发表在《分子医学》上的这项研究发现,像糖精、醋磺酰胺-K和甜蜜素这样的人工甜味剂能抑制抗生素耐药菌的生长。特别是安赛蜜-K,证明在防止这些细菌发展生物膜方面特别有效,生物膜可以保护它们不受抗生素的影响。总的来说,这些甜味剂在减少细菌对普通抗生素的耐药性方面显示出有效性,使其更容易有效和高效地治疗这些细菌,即使使用较小剂量的抗生素。而且,由于这些人工甜味剂在大多数饮食和无糖食品中都很活跃,它们已经被广泛使用。麦卡锡说,开发新的抗生素往往需要数年甚至数十亿美元的时间。因此,在许多人用来喝咖啡的甜味剂中发现一种能够削弱抗生素耐药性细菌的化合物是令人兴奋的,也是治疗败血症和肺炎的一个巨大进步。像败血症和肺炎背后的细菌往往能迅速适应和应对药物,使它们对抗生素特别具有抗药性。这种抗药性在人类和动物身上自然发生,但当过度开药时,我们只是在升级这个问题。能够打击这些耐抗生素的细菌,最终可以帮助突破我们所知的一些最大的病原体威胁。...PC版:https://www.cnbeta.com.tw/articles/soft/1333719.htm手机版:https://m.cnbeta.com.tw/view/1333719.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人