科学家意外发现部分高血压患者出现的基因突变对相关损害具有免疫力

科学家意外发现部分高血压患者出现的基因突变对相关损害具有免疫力其对高血压相关的损害具有免疫力马克斯-德尔布吕克中心锚定信号实验室负责人、德国心血管研究中心(DZHK)的科学家EnnoKlußmann博士说:"高血压几乎总是导致心脏变得更弱,"Klußmann解释说,由于它必须面对更高的压力进行泵送,该器官试图加强其左心室。"但最终,这导致了心肌的增厚--被称为心脏肥大--这可能导致心脏衰竭,大大降低其泵送能力"。一个相关遗传病家庭中的短指。图像来源:SylviaBähring然而,这并不发生在短指和PDE3A基因突变的高血压患者身上。Klußmann说:"由于现在部分但尚未完全了解的原因,他们的心脏似乎对通常由高血压造成的损害有免疫力。"这项研究是由马克斯-德尔布吕克中心、柏林夏里特大学和DZHK的科学家进行的,并已发表在《循环》杂志上。除了Klußmann之外,最终作者还包括马克斯-德尔布吕克中心的教授NorbertHübner和MichaelBader,以及来自实验和临床研究中心(ECRC)的SylviaBähring博士,该中心是夏里特和马克斯-德尔布吕克中心的联合机构。该团队包括来自柏林、波鸿、海德堡、卡塞尔、林堡、吕贝克、加拿大和新西兰的其他43名研究人员,他们最近发表了关于该基因突变的保护作用的研究结果--以及为什么这些发现可能改变未来治疗心力衰竭的方式。该研究有四位第一作者,其中三位是马克斯-德尔布吕克中心的研究人员,一位是ECRC的研究人员。通过正常心脏(左)、通过其中一个突变体心脏(中间)和通过一个严重肥大的心脏(右)的横截面。在后者中,左心室被扩大了。图像来源:AnastasiiaSholokh,MDC具有相同效果的两种突变科学家们对患有高血压和手足徐动(HTNB)综合症--即高血压和异常短小的手指的人类患者以及大鼠模型和心肌细胞进行了测试。这些细胞是由被称为诱导多能干细胞的特殊工程干细胞培育而成。在测试开始前,研究人员改变了细胞和动物中的PDE3A基因,以模拟HTNB突变。Bähring报告说:"在我们检查的病人中,我们遇到了一个以前未知的PDE3A基因突变。以前的研究总是显示该酶的突变位于催化域之外--但我们现在发现了一个突变就在这个域的中心。令人惊讶的是,这两个突变具有相同的效果,即它们使酶比平时更加活跃。这种过度活跃加快了细胞的重要信号分子之一,即cAMP(环状腺苷单磷酸酯)的降解,它参与了心肌细胞的收缩。"Bähring怀疑:"有可能这种基因修改导致两个或多个PDE3A分子聚集在一起,从而更有效地工作。"蛋白质保持不变研究人员使用了一个大鼠模型--由MaxDelbrück中心的MichaelBader实验室用CRISPR-Cas9技术创建--试图更好地了解突变的影响。Klußmann说:"我们用药剂异丙肾上腺素治疗动物,这是一种所谓的β受体激动剂。这种药物有时用于末期心力衰竭的病人。众所周知,异丙肾上腺素会诱发心脏肥大。然而令人惊讶的是,这种情况发生在基因修饰的大鼠身上,其方式与我们在野生型动物身上观察到的相似。与我们的预期相反,现有的高血压并没有加剧这种情况,他们的心脏很明显地受到了异丙肾上腺素这种效应的保护。"在进一步的实验中,研究小组调查了心肌细胞的特定信号级联中的蛋白质是否因突变而发生变化,如果是,则需要确定是哪些蛋白质。通过这一化学反应链,心脏对肾上腺素作出反应,并在兴奋等情况下加速跳动。肾上腺素激活了细胞的β受体,使其产生更多的cAMP。PDE3A和其他PDEs通过化学方式改变cAMP来阻止这一过程。"Klußmann说:"然而,我们发现突变型和野生型大鼠在蛋白质和RNA水平上都没有什么区别。细胞液中发现更多的钙PDE3A对cAMP的转化并不只是发生在心肌细胞的任何地方,而是在一个储存钙离子的管状膜系统附近。这些离子释放到细胞的细胞膜中,触发了肌肉收缩,从而使心脏跳动。收缩后,钙被一个蛋白质复合物泵回储存。这个过程也是由PDE在局部调节的。Klußmann和他的团队假设,由于这些酶在钙泵周围的局部区域过度活跃,应该有较少的cAMP--这将抑制泵的活动。Klußmann实验室的成员、该研究的四位第一作者之一MariaErcu博士说:"在基因修饰的心肌细胞中,我们实际上表明,钙离子在细胞膜中的停留时间比平时更长。这可能会增加细胞的收缩力。"激活而不是抑制Klußmann解释说:"PDE3抑制剂目前被用于急性心力衰竭的治疗,以增加cAMP水平。使用这些药物的常规治疗将迅速消耗心肌的力量。我们的发现表明,不是抑制PDE3,而是--相反--选择性地激活PDE3A可能是预防和治疗高血压引起的心脏损伤(如肥厚性心肌病和心力衰竭)的一种新的和大大改进的方法。"但他说,在这之前,需要对该突变的保护作用进行更多的说明。"我们已经观察到PDE3A不仅变得更加活跃,而且它在心肌细胞中的浓度也降低了,"该研究人员的报告补充说前者有可能通过寡聚作用来解释--一种涉及至少两个酶分子一起工作的机制。"在这种情况下,我们也许可以开发出人工启动局部寡聚的策略--从而模拟出对心脏的保护作用。...PC版:https://www.cnbeta.com.tw/articles/soft/1333703.htm手机版:https://m.cnbeta.com.tw/view/1333703.htm

相关推荐

封面图片

科学家发现一种常见的口腔病原体会增加心脏病发作的损害

科学家发现一种常见的口腔病原体会增加心脏病发作的损害科学家们发现,导致牙龈疾病的牙龈卟啉单胞菌会干扰自噬体和溶酶体的合并。这种干扰会加剧心脏组织的重组,增加心脏病发作后心脏破裂的风险。这项由东京医科齿科大学进行的研究最近发表在《国际口腔科学杂志》(InternationalJournalofOralScience)上,它揭示了一种常见的口腔病原体会阻碍冠心病发作后心肌细胞的自我修复。冠心病发作时,冠状动脉的血流会受阻,导致心肌的营养和氧气供应不足,最终导致心肌细胞死亡。为了防止这种情况的发生,心肌细胞会利用一种称为自噬的过程来处理受损的细胞成分,防止它们导致心脏功能障碍。银杏蛋白酶对异噬和自噬的双重抑制作用,P.g.释放的Gingipain能裂解VAMP8,从而通过阻止自噬体-溶酶体融合来抑制自噬作用,而自噬作用会导致心脏功能障碍。资料来源:东京医科大学心血管内科关于牙龈卟啉单胞菌的主要发现"以前的研究表明,在心肌梗死闭塞部位检测到的牙龈卟啉单胞菌这种牙周病原体会加剧梗死后心肌的脆性,"该研究的第一作者YukaShiheido-Watanabe说。"然而,这种影响的内在机制仍然未知"。为了研究这个问题,研究人员创造了一种不表达gingipain的牙龈脓杆菌,gingipain是牙龈脓杆菌最强大的毒力因子,早前的一项研究表明,gingipain可以抑制细胞在受到损伤时发生程序性细胞死亡。他们随后用这种细菌感染了心肌细胞或小鼠。自噬干扰与心肌细胞功能障碍"结果非常明显,"通讯作者YasuhiroMaejima解释说。"感染了缺乏gingipain的突变细菌的细胞的存活率远远高于感染了野生型细菌的细胞。此外,感染野生型牙龈弧菌的小鼠心肌梗死的影响明显比感染缺乏gingipain的突变型牙龈弧菌的小鼠严重得多"。对这一影响的更详细研究表明,gingipain会干扰自噬体和溶酶体这两种细胞成分的融合,而这一过程对自噬至关重要。在小鼠体内,这导致心肌细胞体积增大,通常会被清除出细胞以保护心肌的蛋白质积聚。Shiheido-Watanabe说:"我们的研究结果表明,感染产生gingipain的牙龈脓疱疮杆菌会导致自噬体过度积累,从而导致细胞功能障碍、细胞死亡,最终导致心脏破裂。"鉴于牙龈脓疱病似乎对心脏病发作后心肌的自我恢复能力有很大影响,治疗这种常见的口腔感染有助于降低致命性心脏病发作的风险。参考文献:《牙周病原牙龈卟啉单胞菌通过抑制自噬体-溶酶体融合损害梗死后心肌》,作者:YukaShiheido-Watanabe、YasuhiroMaejima、ShunNakagama、QintaoFan、NatsukoTamura和TetsuoSasano,2023年9月18日,《国际口腔科学杂志》。DOI:10.1038/s41368-023-00251-2...PC版:https://www.cnbeta.com.tw/articles/soft/1403365.htm手机版:https://m.cnbeta.com.tw/view/1403365.htm

封面图片

科学家通过重新规划小鼠的新陈代谢成功使受损心脏再生

科学家通过重新规划小鼠的新陈代谢成功使受损心脏再生心脏病发作或受到其他损伤后,心脏会用纤维疤痕组织重新修补,这有助于短期内将器官固定在一起,但这一部分不会和心肌细胞一样跳动。随着时间的推移,这会导致各种问题,从进一步的心脏病发作到最终的心力衰竭。心肌细胞与其他组织的主要区别之一在于它们的能量代谢。人体中的大多数组织通过一种叫做糖酵解的过程从糖中获取能量,但心脏却从脂肪中获取能量,这就是所谓的脂肪酸氧化。事实证明,这可能是开启心脏细胞再生的关键。这项研究的作者李翔和袁学军说:"众所周知,能够再生心脏的动物物种主要使用糖和糖酵解作为心肌细胞的燃料。人类心脏在发育早期也主要使用糖酵解,但随后转而使用脂肪酸氧化,因为它能产生更多能量。随着出生后能量生产的转换,许多基因的活性发生了变化,细胞分裂活性也随之丧失。能量产生的个别代谢物对调节基因活动的酶的活性也有重要作用。因此,我们希望通过重新规划能量代谢来引发基因活动的变化,从而重新开启心肌细胞的细胞分裂能力"。为了在小鼠身上验证这一想法,研究小组关闭了一个名为Cpt1b的基因,该基因是脂肪酸氧化的关键。果然,这些小鼠的心脏开始生长,细胞数量在实验过程中几乎翻了一番。接下来,研究人员诱发缺乏Cpt1b的小鼠心脏病发作,然后让它们的心脏重新获得富含氧气的血液。这模拟了心脏病发作后接受支架治疗的病人。研究小组说,几周后,与对照组相比,试验小鼠心脏组织的瘢痕大大减少,心脏功能几乎恢复到心脏病发作前的水平。经过仔细观察,研究人员确定了这种效果背后的机制。关闭该基因会触发一个级联,有效地将心肌细胞重置为不太成熟的状态,使它们能够再生。当然,现阶段这只是在小鼠身上进行的概念验证,但研究小组表示,这可能是一条应用于人类的途径。应该可以开发出阻断Cpt1b所产生的酶的活性的药物,从而模拟患者需求的效果。不过,这离临床应用还很遥远。其他研究发现,利用干细胞或mRNA再生心脏也取得了成功。这项研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1392175.htm手机版:https://m.cnbeta.com.tw/view/1392175.htm

封面图片

科学家利用CRISPR工具识别导致肝癌的基因突变

科学家利用CRISPR工具识别导致肝癌的基因突变CSHL的科学家们在小鼠身上创造了两种肝脏肿瘤亚型,上面的图像。左边的图像显示了一种肝脏肿瘤亚型,它与人类肝癌的最常见形式--肝细胞癌有关。右边是一种与较罕见的肝癌有关的肿瘤亚型,主要发现于儿童,名为肝母细胞瘤。基因包含产生蛋白质所需的信息。拼接是一个过程,从基因编码的信息中复制的RNA信息在被用作制造特定蛋白质的蓝图之前被编辑。源自单一基因、功能高度相似但氨基酸序列不同的蛋白质被称为异构体。异构体的产生是身体对一个基因或蛋白质的特性进行模仿的方式。不同的异构体可以导致不同类型的癌症肿瘤的形成。这些肿瘤亚型很难在实验室中产生,因此难以研究。为了更好地了解异构体如何导致不同类型肝癌的产生,一项新的研究使用基因编辑工具CRISPR/Cas9来研究不同的异构体如何导致不同肿瘤亚型的发展。该研究的通讯作者SemirBeyaz说:"每个人都认为癌症只是一种类型。但是有了不同的异构体,你最终会出现具有不同特征的癌症亚型。"研究人员使用CRISPR/Cas9锁定了小鼠基因CTNNB1的一个部分。CTNNB1基因提供了制造一种叫做β-catenin的蛋白质的指令,这种蛋白质参与调节和协调细胞间的粘附,并参与基因转录。以前的研究已经确定β-catenin是一种有效的致癌基因,这种基因可以将健康细胞转化为肿瘤细胞。CTNNB1基因的突变与广泛的癌症有关,包括肝癌和结肠癌。CTNNB1基因第3外显子的突变--外显子是编码蛋白质的DNA或RNA的一个部分--是参与肿瘤形成的基因转录的关键。在目前的研究中,研究人员希望确定β-catenin突变如何推动肝癌肿瘤亚型的发展,即肝细胞癌(HCC)和肝母细胞瘤(HB)。HCC是成人肝癌中最常见的类型,约占所有肝癌的90%,而HB是一种罕见的肝癌形式,常见于儿童。通常,CRISPR/Cas9技术被用来通过移除DNA序列的部分来抑制基因功能(功能丧失)。但在这里,研究人员首次将其用于功能增益研究,在小鼠中创造不同的致癌突变。以这种方式使用CRISPR/Cas9刺激了蛋白质的活性,因此也刺激了肿瘤的生长。通过对肿瘤亚型、HCC和HB进行基因测序,研究人员发现,CRISPR/Cas9诱导的β-catenin异构体推动了肝脏肿瘤亚型。Beyaz说:"我们能够确定那些与不同癌症亚型相关的异构体。对我们来说,这是一个令人惊讶的发现"。为了证实这些异构体导致了突变,研究人员测试了他们是否能够在不使用CRISPR的情况下在小鼠中产生肝癌亚型。他们发现确实可以。该研究强调了在功能增益研究中使用CRISPR/Cas9的潜力,并创造了一种模拟某些肝脏肿瘤亚型的新方法。它还进一步证明了外显子3在肿瘤发展中的作用以及靶向外显子跳过的好处。外显子跳过是一种疗法,它使用突变特异性反义寡核苷酸(AON)--一种实验室制造的可以与特定RNA分子结合的DNA或RNA位点--来诱导RNA剪接,使细胞"跳过"有问题的或错位的外显子。研究人员希望他们的发现可能会指导未来对癌症的新治疗干预措施的研究。Beyaz说:"最终,我们想做的是找到研究癌症生物学的最佳模型,以便我们能够找到治疗方法。"该研究发表在《病理学杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1354177.htm手机版:https://m.cnbeta.com.tw/view/1354177.htm

封面图片

以色列研究员利用基因手段使小鼠心脏“变年轻”

以色列研究员利用基因手段使小鼠心脏“变年轻”(早报讯)以色列魏茨曼科学研究日前发表声明说,研究员开发出一种基因手段,可以增强小鼠心肌细胞的分裂和再生能力,使心脏“变年轻”,从而提高小鼠日后心脏抗击损伤的能力。据新华社报道,这项于3月8日发表在英国《自然·心血管研究》(NatureCardiovascularResearch)期刊的研究指出,研究员激活了健康小鼠心肌细胞的ERBB2基因,然后再将这一基因关闭。日后,再与基因未被激活的小鼠做比较,观察两类小鼠应对心脏损伤的能力差异。结果显示,三个月大的健康小鼠ERBB2基因被激活后,其心肌功能暂时下降,但关闭基因后,小鼠心肌细胞的分裂和再生能力反而得到了加强。若与ERBB2基因未被激活的小鼠对比,研究员发现,ERBB2基因曾被暂时激活的小鼠,抗击心脏损伤的能力得到了增强,心肌受损程度明显下降。领衔这项研究的魏茨曼科学研究所教授埃勒达德·察霍尔发声明说,通过这一实验,研究人员发现了心脏的“青春之源”,探索出了让心脏更年轻、更强壮的新方法。尽管声明表明,从临床角度看,这一干预手段极端且激烈,目前还远不能适用于人类,但它重塑了人们对心脏再生能力的理解,并且为通过预防性手段减少心脏病危害带来了新的启发。

封面图片

科学家发现一个关键的心脏修复基因

科学家发现一个关键的心脏修复基因一个国际研究小组宣布他们已经发现了心脏病发作后心脏损伤愈合中的一个关键基因。这项发表在《自然-心血管研究》杂志上的研究表明,一类被称为糖皮质激素的类固醇激素,在出生后促进细胞成熟,同时抑制细胞增殖,可能是心脏病发作后心肌无法恢复的部分原因。“我们的结果显示,糖皮质激素作为心脏再生能力的一个重要制动器:对它们的抑制在修复受损的心脏组织方面显示出有希望的结果,”协调这项研究的博洛尼亚大学实验、诊断和专科医学系教授GabrieleD'Uva解释说。“这是一个特别有意义的发现,它在未来可能导致有效的治疗,以改善心脏病患者的心脏状况。”心脏病一直是全球主要死因之一。这部分是由于心脏组织不能像其他身体组织一样再生的事实。心肌细胞在心肌梗塞期间死亡,被无法收缩的疤痕组织所取代。如果损伤严重,可能会导致心力衰竭,即心脏无法泵送足够的血液来满足身体的需求。这种情况的结果有可能产生一些有害的影响,包括心源性猝死。由于新生儿的呼吸和循环系统经历了快速和重大的改变,以实现从宫内到宫外的转变,心脏组织缺乏再生能力是出生后的一个持续特征。在新生的心脏中,心肌细胞特别变得更加专门化;它们不再能够分裂并停止扩大尺寸。D'Uva教授证实说:“与我们身体的大多数组织相比,它们在整个生命过程中都会自我更新,而成年后的心脏组织的更新率极低,几乎不存在。”这是由于心肌细胞的增殖率非常低,而且这种组织中没有大量的“干细胞”:因此,由心肌梗塞等引起的心脏严重损伤是永久性的。为了找到一种方法来扭转心脏的这种再生能力,科学家们把重点放在了糖皮质激素上:这是一类在发育、代谢和维持平衡以及处理压力情况方面发挥重要作用的激素。在为出生做准备时,糖皮质激素被认为可以诱导肺部成熟。然而,研究人员意识到,将新生儿心肌细胞暴露在这些激素下会诱发细胞失去增殖能力。因此,他们分析了出生后第一周的心脏组织,发现糖皮质激素受体(GR)的数量增加。这表明,糖皮质激素的活性在出生后不久就会增加。这导致了一个假设,即糖皮质激素可能负责心肌细胞的成熟,而不利于其复制和再生能力。这一观点现在已经用复杂的分子生物学技术在动物模型中得到了证明。删除GR受体导致心肌细胞的分化减少,即它们仍处于不成熟状态,这导致它们分裂成新的心肌细胞的数量增加。研究人员还解释了负责糖皮质激素复制阻断的分子机制,这是由于对细胞能量代谢的调控。“糖皮质激素受体的缺失已被证明能增加心肌细胞在心肌梗塞后的复制能力,在几周内促进心脏再生的过程,”D'Uva教授确认说。“通过服用一种已经被批准用于人类临床的GR受体抑制剂药物,也得到了类似的结果。”该研究小组现在的目标是测试与其他促进再生的刺激物的潜在协同效应,以便提出更有效的心脏再生策略--这一结果可能会帮助全世界数百万的患者。PC版:https://www.cnbeta.com/articles/soft/1302241.htm手机版:https://m.cnbeta.com/view/1302241.htm

封面图片

科学家揭示斑马鱼如何修复受损的心脏

科学家揭示斑马鱼如何修复受损的心脏当一个人心脏病发作而没有得到及时治疗时,心肌细胞会因缺氧受损并开始死亡。疤痕组织生长,由于我们不能制造新的心肌细胞,心脏就不能像它应该的那样有效地泵送。然而,对于像斑马鱼这样的低等脊椎动物来说,情况却完全不同:它们可以再生器官,包括其心脏。柏林医学系统生物学研究所(BIMSB)定量发育生物学实验室负责人JanPhilippJunker教授说:“我们想找出这种小鱼是如何做到的,以及我们是否可以从中学习。”研究人员在DanielaPanáková博士的帮助下,在斑马鱼的心脏中模拟了心肌梗塞的伤害,DanielaPanáková博士是MDC发育和疾病中电化学信号实验室的负责人。他们利用单细胞分析和细胞谱系树监测心肌细胞的再生情况。他们的研究结果最近发表在《自然-遗传学》上。研究人员将斑马鱼一毫米大小的心脏暴露在一根冷针下几秒钟,同时在显微镜下观察它。针接触到的任何组织都会死亡。与那些心脏病发作的人相似,这导致了炎症反应,随后是成纤维细胞产生的瘢痕。“令人惊讶的是,对伤害的直接反应非常相似。但是,虽然人类的过程在这一点上停止了,但它在鱼体内继续进行。它们形成新的心肌细胞,这些心肌细胞能够收缩,”Junker说。他继续说:“我们想确定来自其他细胞的信号,并帮助驱动再生。”Junker的团队使用单细胞基因组学来搜索受伤的心脏,寻找健康斑马鱼心脏中不存在的细胞。研究人员发现了三种瞬间被激活的新成纤维细胞类型。尽管与其他成纤维细胞有着相同的外观,但这些被激活的细胞有能力读取各种额外的基因,这些基因参与了蛋白质的形成,如胶原蛋白12等结缔组织因子。在人类中,纤维化,也被称为瘢痕,被认为是心脏再生的障碍。然而,一旦被激活,成纤维细胞似乎是该过程的关键。当Panáková使用基因技巧关闭斑马鱼中表达胶原蛋白12的成纤维细胞时,它们的重要性就变得很明显了。结果是:没有再生。Junker认为,成纤维细胞负责发出修复信号是有道理的。他说:“毕竟,它们就在受伤的地方形成。”为了确定这些被激活的成纤维细胞的来源,Junker的团队使用一种名为LINNAEUS的技术制作了细胞系树,他的实验室在2018年开发了这种技术。LINNAEUS与遗传疤痕一起工作,这些疤痕共同作用于每个细胞的来源,就像一个条形码。“我们使用CRISPR-Cas9基因剪刀创造这个条形码。如果在受伤后,两个细胞有相同的条形码序列,这意味着它们是相关的,”Junker解释说。研究人员确定了两个暂时激活的成纤维细胞来源:心脏外层(心外膜)和内层(心内膜)。产生胶原蛋白12的细胞只在心外膜被发现。多名MDC研究人员在整个研究过程中进行了合作--从鱼的实验,到遗传分析,再到结果的生物信息学解释。SaraLelek说:“对我来说,最激动人心的事情是看到我们的学科如何相互补充,以及我们如何在活体动物上验证生物信息学的结果,”她是该研究的主要作者,负责动物试验。“这是一个大项目,让我们都能贡献自己的专业知识。我...PC版:https://www.cnbeta.com/articles/soft/1313317.htm手机版:https://m.cnbeta.com/view/1313317.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人