中国在二维高性能浮栅晶体管存储器方面取得重要进展

中国在二维高性能浮栅晶体管存储器方面取得重要进展中国华中科技大学的材料成形与模具技术全国重点实验室教授翟天佑团队,在二维高性能浮栅晶体管存储器方面取得重要进展,研制了一种具有边缘接触特征的新型二维浮栅晶体管器件,与现有商业闪存器件性能对比,其擦写速度、循环寿命等关键性能均有提升。新华社星期一(9月18日)报道上述消息。浮栅晶体管作为一种电荷存储器,是构成当前大容量固态存储器发展的核心元器件。然而,当前商业闪存内硅基浮栅存储器件所需的擦写时间约在10微秒至1毫秒范围内,远低于计算单元CPU纳秒级的数据处理速度,且其循环耐久性约为10万次,也难以满足频繁的数据交互。二维材料具有原子级厚度和无悬挂键表面,在器件集成时可有效避免窄沟道效应和界面态钉扎等问题,是实现高密度集成、高性能闪存器件的理想材料。不过,在此前的研究中,其数据擦写速度多异常缓慢,鲜有器件可同时实现高速和高循环耐久性。根据新华社,面对这一挑战,翟天佑团队研制了一种具有边缘接触特征的新型二维浮栅晶体管器件,通过对传统金属-半导体接触区域内二硫化钼进行相转变,使其由半导体相(2H)向金属相(1T)转变,使器件内金属-半导体接触类型由传统的3D/2D面接触过渡为具有原子级锐利界面的2D/2D型边缘接触,实现了擦写速度在10纳秒至100纳秒、循环耐久性超过300万次的高性能存储器件。报道引述翟天佑说:“通过对比传统面接触电极与新型边缘接触,该研究说明了优化制备二维浮栅存储器件内金属-半导体接触界面对改善其擦写速度、循环寿命等关键性能有重要作用。”

相关推荐

封面图片

西电郝跃院士在超陡垂直晶体管器件研究方面取得进展

西电郝跃院士在超陡垂直晶体管器件研究方面取得进展该工作报道一种新型晶体管器件技术,将电阻阈值开关与垂直晶体管进行集成,实现了兼具超陡亚阈值摆幅与高集成密度潜力的垂直沟道晶体管,电流开关比超过8个数量级且室温亚60mV/dec电流范围超过6个数量级,为后摩尔时代高性能晶体管技术提供了一种新的器件方案。随着集成电路制造工艺下探亚5纳米技术节点,传统的晶体管尺寸微缩路线无法像过去一样使能“器件-芯片”性能提升与成本控制。在此背景下,学术界与工业界近年来提出多种创新器件技术,以期克服常规MOSFET的技术局限。其中,三星、IBM、欧洲微电子中心(IMEC)等国际研发机构推出了垂直输运场效应晶体管(vertical-transportfield-effecttransistor,VTFET)器件技术。通过将电流方向从传统MOSFET的平面方向转换为垂直方向,该器件结构有望在芯片上垂直构造晶体管,从而大幅降低器件占有空间,提高集成密度。受此启发,西电研究团队采用超薄二维异质结构造VTFET半导体沟道并与电阻阈值开关(TS)垂直集成,实现超陡垂直晶体管(TS-VTFET)。这一器件技术借助超薄二维半导体出色的静电调控,大幅提升器件栅控能力;同时,借助电阻阈值开关的电压控制“绝缘-导电”相变特性,该器件的室温亚阈值摆幅达到1.52mV/dec,远低于常规MOSFET室温亚阈值摆幅高于60mV/dec的理论极限。此外,在发表的概念验证工作中,研究团队制备的超陡垂直晶体管表现出强大性能,包括电流开关比高于8个数量级、亚60mV/dec电流区间超过6个数量级、漏电流小于10fA等,为后摩尔时代高性能低功耗晶体管技术提供了一种新的方案。...PC版:https://www.cnbeta.com.tw/articles/soft/1419269.htm手机版:https://m.cnbeta.com.tw/view/1419269.htm

封面图片

北大美女博士开发全新晶体管 性能媲美商用高端芯片 登Nature顶刊

北大美女博士开发全新晶体管性能媲美商用高端芯片登Nature顶刊发表在Nature上的这篇论文(Nature,2023,616:66–72),内容是关于晶体管的。北京大学介绍称,为解决我国高端芯片的“卡脖子”问题尽一份力,于梦诗在博士攻读期间选择了二维半导体材料的可控制备作为主攻方向。化学专业的她,自学了固体物理、半导体器件物理等基础知识,打下了坚实的理论基础。首例外延高κ栅介质集成型二维鳍式晶体管(2DBi2O2Se/Bi2SeO5FinFET)在导师彭海琳教授的指导下,她与团队开发了全新的二维鳍式晶体管构筑方法,实现了世界首例二维半导体鳍片/高κ栅氧化物异质结阵列的外延生长及其三维架构的集成制备。并研制了高性能二维鳍式场效应晶体管(2DFinFET),性能可比拟商用高端芯片。这一研究成果在国际顶级期刊Nature上发表。据介绍,这一原创性工作突破了后摩尔时代高速低功耗芯片的二维新材料精准合成与新架构集成瓶颈,为开发未来先进芯片技术带来了新的机遇,被评选为2023年度“中国半导体十大研究进展”。在保研北大之前,于梦诗本科就读于南京理工大学2015级高分子材料与工程专业。本科期间就以第一作者发表7篇SCI论文,其中1篇进入ESI全球前1%的高被引论文,总影响因子达27.12,达到学校博士生毕业要求。...PC版:https://www.cnbeta.com.tw/articles/soft/1421053.htm手机版:https://m.cnbeta.com.tw/view/1421053.htm

封面图片

计算领域的里程碑:拥有超过1000个晶体管的二维半导体材料内存处理器诞生

计算领域的里程碑:拥有超过1000个晶体管的二维半导体材料内存处理器诞生由EPFL研究人员开发的首个使用二维半导体材料的大规模内存处理器可大幅减少信息和通信技术领域的能源消耗。当信息和通信技术(ICT)处理数据时,它们会将电能转化为热能。如今,全球ICT生态系统的二氧化碳排放量已与航空业不相上下。然而,事实证明,计算机处理器消耗的大部分能源并非用于执行计算。相反,处理数据所消耗的大部分能源用于在内存和处理器之间传输字节。在11月13日发表在《自然-电子学》(NatureElectronics)杂志上的一篇论文中,EPFL工程学院纳米电子学和结构实验室(LANES)的研究人员介绍了一种新型处理器,这种处理器将数据处理和存储整合到一个设备上,即所谓的内存处理器,从而解决了这种低效问题。他们在二维半导体材料的基础上创造出了第一个由1000多个晶体管组成的内存处理器,开辟了新的领域,这是通往工业化生产道路上的一个重要里程碑。在发表于《自然-电子学》(NatureElectronics)杂志上的一篇论文中,EPFL工程学院纳米电子学与结构实验室(LANES)的研究人员介绍了一种新型处理器,这种处理器将数据处理和存储整合到一个设备上,即所谓的内存处理器,从而解决了效率低下的问题。他们在二维半导体材料的基础上创造了首个由1000多个晶体管组成的内存处理器,开辟了新的领域,这是通往工业化生产道路上的一个重要里程碑。图片来源:2023EPFL/AlanHerzog冯-纽曼的遗产领导这项研究的安德拉什-基斯(AndrasKis)认为,当今CPU效率低下的罪魁祸首源自普遍采用的冯-诺依曼架构。具体来说,就是将用于执行计算和存储数据的组件物理分离。由于这种分离,处理器需要从存储器中检索数据来执行计算,这就需要移动电荷、对电容器充电和放电以及沿线传输电流,所有这些都会耗散能量。直到20年前,这种架构还是合理的,因为数据存储和处理需要不同类型的设备。但是,冯-诺依曼架构正日益受到更高效替代方案的挑战。基斯解释说:"如今,人们正在努力将存储和处理合并成一种更通用的内存处理器,这种处理器包含的元件既可以用作存储器,也可以用作晶体管。他的实验室一直在探索如何利用二硫化钼(MoS2)这种半导体材料实现这一目标。"新型二维处理器架构在他们的《自然-电子学》论文中,LANES的博士助理GuilhermeMigliatoMarega和他的合著者介绍了一种基于MoS2的内存处理器,专门用于数据处理中的基本操作之一:矢量矩阵乘法。这种运算在数字信号处理和人工智能模型的实施中无处不在。提高其效率可为整个信息和通信技术领域节省大量能源。他们的处理器将1024个元素组合在一个一厘米见方的芯片上。每个元件包括一个二维MoS2晶体管和一个浮动栅极,浮动栅极用于在存储器中存储电荷,从而控制每个晶体管的导电性。以这种方式将处理和存储器耦合在一起,从根本上改变了处理器进行计算的方式。基斯解释说:"通过设置每个晶体管的电导率,我们只需向处理器施加电压并测量输出,就能执行模拟矢量矩阵乘法运算。"向实际应用迈进一大步在开发内存处理器的过程中,材料MoS2的选择起到了至关重要的作用。首先,MoS2是一种半导体,这是开发晶体管的必要条件。与当今计算机处理器中使用最广泛的半导体硅不同,MoS2形成了一个稳定的单层,只有三个原子厚,只与周围环境发生微弱的相互作用。它的薄度为生产极其紧凑的设备提供了可能。最后,这是一种Kis实验室非常熟悉的材料。2010年,他们利用从晶体上剥离下来的单层MoS2材料,用苏格兰胶带制作出了第一个单层MoS2晶体管。在过去的13年中,他们的工艺已日趋成熟,而米利亚托-马雷加(MigliatoMarega)的贡献功不可没。"从单个晶体管到超过1000个晶体管,关键的进步在于我们能够沉积的材料质量。经过大量的工艺优化,我们现在可以生产覆盖着一层均匀的MoS2的整个晶片。这使我们能够采用行业标准工具在计算机上设计集成电路,并将这些设计转化为物理电路,从而为大规模生产打开大门,"基斯说道。振兴欧洲芯片制造业除了纯粹的科学价值外,Kis还认为这一成果证明了瑞士与欧盟之间紧密科学合作的重要性,特别是在旨在加强欧洲在半导体技术和应用方面的竞争力和适应力的《欧洲芯片法案》背景下。"欧盟的资助对这个项目和之前的项目都至关重要,包括资助第一个MoS2晶体管的工作,这表明欧盟的资助对瑞士是多么重要,"基斯说。"同时,这也表明了瑞士所做的工作如何能让欧盟在重振电子制造的过程中受益。例如,欧盟可以专注于开发用于人工智能加速器和其他新兴应用的非冯-诺依曼处理架构,而不是与其他人进行同样的竞赛。通过定义自己的竞赛,欧盟可以抢占先机,确保在未来占据有利地位。"...PC版:https://www.cnbeta.com.tw/articles/soft/1397345.htm手机版:https://m.cnbeta.com.tw/view/1397345.htm

封面图片

中国科大在二维器件范德华接触研究中取得进展

中国科大在二维器件范德华接触研究中取得进展据中国科大:近日,我校合肥微尺度物质科学国家研究中心曾华凌教授、物理学院乔振华教授和化学与材料科学学院邵翔教授在二维电学器件范德华接触研究中取得新进展,展示了一种制备二维电学器件的“全堆叠”技术,优化了二维材料与金属电极之间的界面接触,为二维电学器件的制备提供了一种高效、高质量且高稳定性的普适方法。相关研究成果于5月30日以“Reliablewafer-scaleintegrationoftwo-dimensionalmaterialsandmetalelectrodeswithvanderWaalscontacts”为题在线发表在国际学术期刊《自然・通讯》上(Nat.Commun.15:4619(2024))。

封面图片

英特尔3D堆叠式CMOS晶体管将背面电源和直接背面接触相结合

英特尔3D堆叠式CMOS晶体管将背面电源和直接背面接触相结合"随着我们进入埃米时代,并在四年内走过五个工艺节点,持续创新比以往任何时候都更加重要。在IEDM2023上,英特尔展示了其在研究方面取得的进展,这些进展推动了摩尔定律的发展,凸显了我们有能力为下一代移动计算带来领先的技术,从而实现进一步扩展和高效的功率交付。"英特尔高级副总裁兼元器件研究部总经理桑杰-纳塔拉詹(SanjayNatarajan)为何重要?晶体管扩展和背面功率是帮助满足对更强大计算能力的指数级增长需求的关键。年复一年,英特尔满足了这一计算需求,表明其创新将继续推动半导体行业的发展,并继续成为摩尔定律的基石。英特尔的元件研究小组通过堆叠晶体管不断突破工程极限,将背面功率提升到新的水平,从而实现更多的晶体管扩展和更高的性能,并证明不同材料制成的晶体管可以集成在同一晶圆上。左图显示的是电源线和信号线在晶圆顶部混合在一起的设计。右图显示的是新的PowerVia技术,这是英特尔在业界首次采用的独特的背面电源传输网络。PowerVia是在2021年7月26日举行的"英特尔加速"活动上推出的。在这次活动中,英特尔展示了公司未来的工艺和封装技术路线图。(图片来源:英特尔公司)最近公布的工艺技术路线图强调了公司在持续扩展方面的创新,包括PowerVia背面电源、用于高级封装的玻璃基板和FoverosDirect,这些技术都源于元器件研究部门,预计将在本十年内投入生产。在IEDM2023上,英特尔元件研究部展示了其致力于创新的决心,即在硅片上安装更多晶体管,同时实现更高的性能。研究人员已经确定了通过有效堆叠晶体管继续扩大规模所需的关键研发领域。结合背面电源和背面触点,这些将是晶体管架构技术的重大进步。在改进背面电源传输和采用新型二维沟道材料的同时,英特尔正致力于到2030年将摩尔定律扩展到一万亿个晶体管封装。英特尔在IEDM2023上展示的最新晶体管研究成果能够以低至60纳米的栅极间距垂直堆叠互补场效应晶体管(CFET)。通过堆叠晶体管,可实现面积效率和性能优势。它还与背面电源和直接背面接触相结合。它彰显了英特尔在全栅极晶体管领域的领先地位,展示了公司超越RibbonFET的创新能力,使其在竞争中处于领先地位。英特尔在四年内走过了五个工艺节点,并确定了所需的关键研发领域,以继续扩展具有背面功率传输功能的晶体管:英特尔的PowerVia将于2024年完成制造,这将是首次实现背面功率传输。在IEDM2023上,元器件研究部确定了在PowerVia之后扩展和扩大背面功率传输的途径,以及实现这些途径所需的关键工艺进步。此外,这项工作还强调了背面触点和其他新型垂直互连的使用,以实现面积效率高的器件堆叠。...PC版:https://www.cnbeta.com.tw/articles/soft/1403367.htm手机版:https://m.cnbeta.com.tw/view/1403367.htm

封面图片

科学家发现完美2D超薄材料 造出全新晶体管

科学家发现完美2D超薄材料造出全新晶体管但在此之前,科学家们必须首先找到一种方法,在保持其完美结晶形态的同时,在工业标准硅片上设计这种材料。近期,麻省理工学院(MIT)的工程师们似乎找到了一个可能的解决方案,他们将研究成果发表在了《自然》杂志上。据悉,该团队开发出了一种“非外延单晶生长”方法,可以在现有的工业硅晶圆上生长出纯净的、无缺陷的二维材料,以制造出更小的晶体管。通过新方法,研究小组用一种叫做过渡金属二硫化物(TMD)的2D材料制造了一个简单的功能晶体管,这种材料在纳米尺度上的导电性比硅更好。麻省理工学院机械工程副教授JeehwanKim说,“我们希望我们的技术能够开发基于二维半导体的高性能下一代电子设备。我们已经开启了一种利用2D材料来追赶摩尔定律的方法。”一般而言,为生产2D材料,研究人员通常采用一种手工工艺,即从大块材料中小心地剥离原子般薄的薄片,就像剥洋葱层一样。但大多数块状材料都是多晶的,包含多个随机方向生长的晶体。当一种晶体与另一种晶体相遇时,“晶界”起到了电屏障的作用。任何流过一个晶体的电子在遇到不同方向的晶体时都会突然停止,从而降低材料的导电性。即使在剥离2D薄片之后,研究人员也必须搜索薄片中的“单晶”区域,这是一个繁琐且耗时的过程,很难应用于工业规模。在上述新研究中,研究人员发现了制造二维材料的其他方法,即通过在蓝宝石晶片上生长它们。蓝宝石是一种具有六角形原子图案的材料,可促使二维材料以相同的单晶方向组装。新的“非外延单晶生长”方法不需要剥离和搜索二维材料的薄片,并可使晶体向同一方向生长。研究小组据此制造了一个简单的TMD晶体管,其电性能与相同材料的纯薄片一样好。研究人员表示,未来或可制造出小于几纳米的器件,这将改变摩尔定律的规律。...PC版:https://www.cnbeta.com.tw/articles/soft/1340041.htm手机版:https://m.cnbeta.com.tw/view/1340041.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人