Salesforce公司的科学家用AI开发出能分解垃圾的蛋白质

Salesforce公司的科学家用AI开发出能分解垃圾的蛋白质ProGen是由SalesforceResearch(是的,就是那个Salesforce)制造的,使用语言处理来学习生物学。简而言之,ProGen采用氨基酸序列并将其转化为蛋白质。1999年,生物学家GünterBlobel因其在蛋白质合成方面的工作而获得诺贝尔奖,但这项由人工智能驱动的新技术可能已经超过了它。ProGen加速了新蛋白质的创造,这些蛋白质可用于许多方面,如药物或分解垃圾填埋场中的塑料,估计可以帮助我们避免迫在眉睫的2505年大垃圾雪崩。参与该项目的科学家詹姆斯-弗雷泽(JamesFraser)说:"人工设计比正常过程中的设计要好。我们现在可以制造特定类型的酶,比如那些在高温或酸中工作良好的酶。"为了制造ProGen,Salesforce公司的科学家向该系统提供了2.8亿种不同蛋白质的氨基酸序列。人工智能系统很快就做出了惊人的100万条蛋白质序列,其中100条被挑选出来进行测试。在这些序列中,有五个被制成了实际的蛋白质,并在细胞中进行了测试,要知道这仅仅是生成结果的0.0005%!似乎下一个前沿领域是开发一个人工智能来测试所有的可能性。其中两种人工酶在分解细菌方面与蛋清中的天然酶一样好。即使如此,两者也只有18%的相似性。ProGen是在2020年使用最初为编写文本而制作的LLM,与ChatGPT类似。该人工智能系统通过查看大量数据了解了蛋白质的规则和结构。对于蛋白质,有巨大的可能性,但ProGen仍然可以制造出工作的酶,即使在结果之间有很大的差异。参与该项目的科学家AliMadani说:"这是蛋白质工程师的一个新工具,我们很高兴看到它能被用来做什么。这个项目看起来非常有价值,而且肯定花费了Salesforce的一大笔钱,所以我们很惊讶地看到ProGen的代码在Github上可供任何想尝试它(或添加它)的人使用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1341599.htm手机版:https://m.cnbeta.com.tw/view/1341599.htm

相关推荐

封面图片

科学家用尖端人工智能揭开蛋白质的秘密

科学家用尖端人工智能揭开蛋白质的秘密该工具由KAUST生物信息学研究员MaxatKulmanov及其同事开发,在预测蛋白质功能方面优于现有的分析方法,甚至能够分析现有数据集中没有明确匹配的蛋白质。该模型被称为DeepGO-SE,它利用了类似于Chat-GPT等生成式人工智能工具所使用的大型语言模型。然后,它根据蛋白质工作方式的一般生物学原理,利用逻辑蕴含得出关于分子功能的有意义的结论。从本质上讲,它通过构建部分世界模型(在本例中为蛋白质功能),并根据常识和推理推断出在这些世界模型中应该发生的事情,从而赋予计算机逻辑处理结果的能力。一种新的人工智能(AI)工具能对未知蛋白质的功能进行逻辑推理,有望帮助科学家揭开细胞内部的奥秘。图片来源:©2024KAUST;IvanGromicho他补充说:"这种方法有很多应用前景,"KAUST生物本体论研究小组负责人罗伯特-霍恩多夫(RobertHoehndorf)说,"特别是当需要对神经网络或其他机器学习模型生成的数据和假设进行推理时。"库尔曼诺夫和霍恩多夫与KAUST的斯特凡-阿罗德(StefanArold)以及瑞士生物信息学研究所的研究人员合作,评估了该模型破译那些在体内作用未知的蛋白质功能的能力。该工具成功地利用了一种鲜为人知的蛋白质的氨基酸序列数据及其与其他蛋白质的已知相互作用,并精确地预测了其分子功能。该模型非常精确,在一次国际功能预测工具竞赛中,DeepGO-SE在1600多种算法中名列前20位。KAUST团队目前正在利用这一工具研究在沙特阿拉伯沙漠极端环境中生长的植物中发现的神秘蛋白质的功能。他们希望这些发现将有助于确定生物技术应用中的新型蛋白质,并希望其他研究人员也能使用这一工具。库尔曼诺夫解释说:"DeepGO-SE分析未表征蛋白质的能力可以促进药物发现、代谢通路分析、疾病关联、蛋白质工程、筛选感兴趣的特定蛋白质等任务。"编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1418103.htm手机版:https://m.cnbeta.com.tw/view/1418103.htm

封面图片

哈佛大学科学家发现了一种此前未知的细胞分解蛋白质的方式

哈佛大学科学家发现了一种此前未知的细胞分解蛋白质的方式在一次跨部门合作中,哈佛大学医学院的研究人员发现了一种名为midnolin的蛋白质,它在降解许多短寿命核蛋白的过程中发挥着关键作用。研究表明,midnolin是通过直接抓住蛋白质并将其拉入细胞废物处理系统--蛋白酶体,并将其破坏。科学家发现了一种细胞降解不需要的蛋白质的新方法,这些蛋白质会影响重要的神经、免疫和发育基因。这一发现可能有助于治疗由细胞中蛋白质失衡引起的疾病。研究结果最近发表在《科学》杂志上。共同第一作者、哈佛医学院神经生物学研究员XinGu说:"这些特殊的短寿命蛋白质已经为人所知40多年了,但没有人确定它们究竟是如何降解的。"由于在这一过程中被分解的蛋白质会调节与大脑、免疫系统和发育有关的重要功能基因,科学家们最终可能会将这一过程作为控制蛋白质水平的目标,从而改变这些功能并纠正任何功能障碍。"我们发现的机制非常简单,而且相当优雅,"共同第一作者、HMS遗传学博士候选人ChristopherNardone补充说。"这是一项基础科学发现,但对未来有很多影响。"众所周知,细胞可以通过用一种叫做泛素的小分子标记蛋白质来分解蛋白质。标签会告诉蛋白酶体不再需要这些蛋白质,从而将其破坏。已故的弗雷德-戈德堡(FredGoldberg)在哈佛医学院完成了这一过程的大部分开创性研究。然而,有时蛋白酶体分解蛋白质时不需要泛素标签的帮助,这让研究人员怀疑存在另一种不依赖泛素的蛋白质降解机制。Nardone说:"文献中有零星证据表明,蛋白酶体能以某种方式直接降解无标记的蛋白质,但没有人明白这是如何发生的。"有一类蛋白质似乎是通过另一种机制降解的,那就是刺激诱导转录因子:这些蛋白质在细胞受到刺激后迅速生成,并进入细胞核打开基因,然后迅速被破坏。Gu说:"一开始,让我印象深刻的是,这些蛋白质极不稳定,它们的半衰期很短--一旦产生,它们就会发挥功能,之后很快就会被降解。"哈佛医学院布拉瓦特尼克研究所内森-马什-普西(NathanMarshPusey)神经生物学教授迈克尔-格林伯格(MichaelGreenberg)与哈佛医学院和布里格姆妇女医院格雷戈尔-孟德尔(GregorMendel)遗传学和医学教授斯蒂芬-埃利奇(StephenElledge)是这篇论文的共同第一作者。从少数到数百为了研究这一机制,研究小组从两个熟悉的转录因子入手:格林伯格实验室对Fos和EGR1进行了广泛研究,前者在学习和记忆中发挥作用,后者则参与细胞分裂和存活。研究人员利用埃利奇实验室开发的复杂蛋白质和基因分析方法,锁定了midnolin这种有助于分解这两种转录因子的蛋白质。后续实验发现,除了Fos和EGR1,midnolin还可能参与分解细胞核中的数百种其他转录因子。Gu和Nardone回忆说,他们对自己的研究结果感到震惊和怀疑。为了证实他们的发现,他们决定要弄清楚midnolin究竟是如何靶向和降解如此多不同的蛋白质的。Nardone说:"当我们确定了所有这些蛋白质之后,关于midnolin机制究竟是如何工作的还有许多令人费解的问题。"借助一种名为AlphaFold的机器学习工具(可预测蛋白质结构),再加上一系列实验室实验的结果,研究小组得以充实这一机制的细节。他们发现,midnolin有一个"捕捉结构域"--该蛋白质的一个区域可以捕捉其他蛋白质,并将它们直接送入蛋白酶体,在蛋白酶体中被分解。这个"捕捉结构域"由两个独立的区域组成,这两个区域通过氨基酸连接在一起(就像一根绳子上的手套),能抓住蛋白质中一个相对非结构化的区域,从而使midnolin能够捕捉多种不同类型的蛋白质。值得注意的是像Fos这样的蛋白质负责开启基因,促使大脑中的神经元根据刺激进行接线和重新接线。IRF4等其他蛋白质通过确保细胞能够制造功能性B细胞和T细胞,激活支持免疫系统的基因。埃利奇说:"这项研究最令人兴奋的地方在于,我们现在了解了一种不依赖泛素化的降解蛋白质的新的通用机制。"诱人的转化潜力在短期内,研究人员希望更深入地研究他们发现的机制。他们正计划进行结构研究,以更好地了解midnolin如何捕获和降解蛋白质的细节。他们还在制造缺乏midnolin的小鼠,以了解这种蛋白质在不同细胞和发育阶段的作用。科学家们说,他们的发现具有诱人的转化潜力。它可能提供一种途径,研究人员可以利用它来控制转录因子的水平,从而调节基因表达,进而调节体内的相关过程。格林伯格说:"蛋白质降解是一个关键过程,它的失调是许多失调和疾病的基础,包括某些神经和精神疾病,以及一些癌症。"例如,当细胞中Fos等转录因子过多或过少时,可能会出现学习和记忆问题。在多发性骨髓瘤中,癌细胞会对免疫蛋白IRF4上瘾,因此它的存在会助长这种疾病。研究人员尤其感兴趣的是,找出哪些疾病可能是开发通过mindolin-蛋白酶体途径发挥作用的疗法的理想候选者。Gu说:"我们正在积极探索的一个领域是如何调整该机制的特异性,以便它能特异性地降解感兴趣的蛋白质。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379781.htm手机版:https://m.cnbeta.com.tw/view/1379781.htm

封面图片

人工智能技术可从零开始生成原始蛋白质

人工智能技术可从零开始生成原始蛋白质该实验表明,最初为阅读和写作语言文本而创建的自然语言处理人工智能可以掌握生物学的某些基本概念。这个被称为ProGen的AI程序是由SalesforceResearch开发的,它采用了下标预测法,从氨基酸序列中构建人工蛋白质。科学家们说,这项新技术可能会变得比定向进化(诺贝尔奖得主的蛋白质设计技术)更强大,它将通过加快开发新的蛋白质来为有50年历史的蛋白质工程领域注入活力,这些蛋白质几乎可以用于从治疗药物到降解塑料的任何用途。加州大学旧金山分校药学院生物工程和治疗科学教授詹姆斯-弗雷泽博士说:"人工设计的性能比受进化过程启发的设计好得多,"他是这项工作的作者之一,该论文最近发表在《自然-生物技术》上。该论文的前一个版本自2021年7月以来一直在预印本服务器BiorXiv上提供,在那里获得了几十次引用,然后才发表在同行评议的期刊上。"语言模型正在学习进化的各个方面,但它与正常的进化过程不同,"弗雷泽说。"我们现在有能力调整这些属性的生成,以达到特定的效果。例如,一种热稳定性极强的酶或喜欢酸性环境或不会与其他蛋白质相互作用的酶。"为了创建这个模型,科学家们只是将2.8亿种不同的蛋白质的氨基酸序列输入机器学习模型,并让它消化了几周的信息。然后,他们用五个溶菌酶家族的56000个序列以及关于这些蛋白质的一些背景信息对该模型进行了微调。该模型迅速生成了一百万个序列,研究小组根据它们与天然蛋白质序列的相似程度,以及人工智能蛋白质的基础氨基酸"语法"和"语义"的自然程度,选择了100个进行测试。在这第一批由TierraBiosciences公司进行体外筛选的100种蛋白质中,研究小组制作了五种人工蛋白质在细胞中进行测试,并将其活性与鸡蛋白中发现的一种酶进行比较,这种酶被称为鸡蛋白溶菌酶(HEWL)。在人类的眼泪、唾液和牛奶中也有类似的溶菌酶,它们在那里抵御细菌和真菌。其中两种人工酶能够分解细菌的细胞壁,其活性与HEWL相当,但它们的序列彼此之间只有大约18%的相同。这两个序列与任何已知的蛋白质都有大约90%和70%的相同。一个天然蛋白质只要有一个突变就能使其停止工作,但在另一轮筛选中,研究小组发现人工智能生成的酶显示出活性,即使其序列中只有31.4%与任何已知的天然蛋白质相似。人工智能甚至能够学习酶的形状,仅仅通过研究原始序列数据。通过X射线晶体学测量,人造蛋白质的原子结构看起来和它们应该的一样,尽管其序列是以前从未见过的。SalesforceResearch在2020年开发了ProGen,基于他们的研究人员最初开发的一种用于生成英语文本的自然语言编程。他们从以前的工作中知道,人工智能系统可以教自己语法和单词的含义,以及其他使写作有条理的基本规则。"当你用大量数据训练基于序列的模型时,它们在学习结构和规则方面真的很强大,"SalesforceResearch的人工智能研究主任、该论文的资深作者NikhilNaik博士说。"它们可以学习哪些词可以共同出现,也可以学习构成性。"对于蛋白质,设计的选择几乎是无限的。就蛋白质而言,溶酶很小,最多有大约300个氨基酸。但是有20个可能的氨基酸,就有大量的(20300)可能的组合。这比古往今来的所有人类,乘以地球上的沙粒数量,再乘以宇宙中的原子数量还要多。考虑到无限的可能性,该模型能够如此容易地产生工作的酶,这一点非常了不起。ProfluentBio公司的创始人、前SalesforceResearch公司的研究科学家、该论文的第一作者AliMadani博士说:"从零开始生成功能性蛋白质的能力表明,我们正在进入一个蛋白质设计的新时代。"这是一个可供蛋白质工程师使用的多功能新工具,我们期待着看到治疗性应用"。完整的作者和资助名单请见该论文。论文中描述的方法的综合代码库可在https://github.com/salesforce/progen上公开获取。...PC版:https://www.cnbeta.com.tw/articles/soft/1346413.htm手机版:https://m.cnbeta.com.tw/view/1346413.htm

封面图片

科学家用新的无细胞蛋白质结晶方法推进结构生物学的发展

科学家用新的无细胞蛋白质结晶方法推进结构生物学的发展东京理工大学开发了一种新的无细胞蛋白质结晶(CFPC)方法,包括直接的蛋白质结晶,是结构生物学领域的一个重大进步。这项技术将使我们能够分析用传统方法无法研究的不稳定的蛋白质。分析这些将增加我们对细胞过程和功能的了解。PC版:https://www.cnbeta.com/articles/soft/1323455.htm手机版:https://m.cnbeta.com/view/1323455.htm

封面图片

科学家开发出一种可改善记忆力的工程蛋白质

科学家开发出一种可改善记忆力的工程蛋白质罗马天主教大学医学与外科学院和FondazionePoliclinicoUniversitarioAgostinoGemelliIRCCS的神经科学家对一种分子--蛋白质LIMK1进行了基因改造,开发出了一种能增强记忆力的工程蛋白。他们添加了一个"分子开关",通过服用一种名为雷帕霉素的药物来激活该开关。这是发表在《科学进展》(ScienceAdvances)杂志上的一项研究成果,罗马天主教大学和阿戈斯蒂诺-杰梅里大学基金会(FondazionePoliclinicoUniversitarioAgostinoGemelliIRCCS)参与了这项研究。这项研究由生理学全职教授兼神经科学系主任克劳迪奥-格拉西(ClaudioGrassi)负责协调。这项研究得到了意大利教育、大学和研究部、美国阿尔茨海默氏症协会基金会和意大利卫生部的支持,具有巨大的应用潜力,可以提高我们对记忆功能的认识,促进确定治疗痴呆症等神经精神疾病的创新解决方案。LIMK1在记忆过程中的作用LIMK1蛋白在决定神经元结构变化(即树突棘的形成)方面起着至关重要的作用,树突棘能增强神经网络中的信息传输,在学习和记忆过程中至关重要。该研究的资深作者克劳迪奥-格拉西(ClaudioGrassi)教授解释说:"记忆是一个复杂的过程,涉及到神经元之间的连接--突触的改变,在特定的脑区,如海马区,突触是一种神经结构,在记忆形成中起着至关重要的作用。这种现象被称为"突触可塑性"(synapticplasticity),涉及神经回路被激活时突触结构和功能的变化,例如感官体验。格拉西教授补充说:"这些经历会促进涉及大量蛋白质的复杂信号通路的激活。""事实上,这些蛋白质的表达或修饰减少与认知功能的改变有关。LIMK1就是其中之一。我们的研究目标是调节这种蛋白质的活性,因为它在神经元之间树突棘的成熟过程中起着关键作用。"格拉西教授强调说:"用药物控制LIMK1意味着能够促进突触可塑性,从而促进依赖于突触可塑性的生理过程。"化学遗传策略:增强记忆的新方法该研究的第一作者、天主教大学生理学副教授克里斯蒂安-里波利(CristianRipoli)补充道:"这种创新的'化学遗传'策略结合了遗传学和化学,其关键恰恰与雷帕霉素的使用有关,雷帕霉素是一种免疫抑制药物,众所周知,在临床前模型中,它能延长人的寿命,并对大脑产生有益影响。"里波利教授强调说:"因此,我们修改了LIMK1蛋白质的序列,插入了一个分子开关,使我们能够通过服用雷帕霉素按指令激活LIMK1蛋白质。在患有老年性认知功能衰退的动物身上,使用这种基因疗法修改LIMK1蛋白并用药物激活它,可以显著改善它们的记忆力。这种方法使我们能够在生理和病理条件下操纵突触可塑性过程和记忆。此外,它还为开发更多的'工程'蛋白质铺平了道路,这些蛋白质可能会彻底改变神经学领域的研究和治疗。"研究的下一步将是在表现出记忆缺陷的神经退行性疾病(如阿尔茨海默病)的实验模型中验证这种疗法的有效性。格拉西教授最后说:"还需要进一步研究,以验证这项技术在人体中的应用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1398075.htm手机版:https://m.cnbeta.com.tw/view/1398075.htm

封面图片

科学家揭示蛋白质如何驱动癌症生长

科学家揭示蛋白质如何驱动癌症生长在圣路易斯华盛顿大学医学院、麻省理工学院和哈佛大学布罗德研究所、杨百翰大学以及世界各地其他机构的领导下,临床蛋白质组肿瘤分析联合会对驱动癌症的关键蛋白质及其调控方式进行了研究。研究结果于8月14日发表在《细胞》(Cell)和《癌细胞》(CancerCell)杂志上的一组论文中。临床肿瘤蛋白质组学分析联合会由美国国立卫生研究院(NIH)国家癌症研究所资助。资深作者、华盛顿大学戴维-英格利希-史密斯医学特聘教授丁力博士说:"在我们开发更好的癌症疗法的努力中,这种对驱动肿瘤生长的蛋白质的新分析是继癌症基因组测序之后的下一步。通过过去的癌细胞基因组测序工作,我们确定了近300个驱动癌症的基因。现在,我们正在研究这些癌基因所启动的机器的细节--实际导致细胞分裂失控的蛋白质及其调控网络。我们希望这项分析能成为癌症研究人员开发多种肿瘤类型新疗法的重要资源。"研究人员分析了涉及10种不同类型癌症的约1万个蛋白质,他们强调了大量数据在这类分析中的重要性;其中许多重要的癌症驱动蛋白在任何一种癌症中都很罕见,如果对肿瘤类型进行单独研究,就不可能发现这些蛋白。这项分析包括两种不同类型的肺癌以及结直肠癌、卵巢癌、肾癌、头颈癌、子宫癌、胰腺癌、乳腺癌和脑癌。丁力也是巴恩斯犹太医院和华盛顿大学医学院西特曼癌症中心的研究成员。他介绍谁哦"当我们对多种癌症类型进行综合分析时,我们就能提高检测导致癌症生长和扩散的重要蛋白质的能力。综合分析还能让我们找出驱动不同类型癌症的主要共同机制。"除了单个蛋白质的功能外,这些数据还能让研究人员了解蛋白质之间是如何相互作用来促进癌症生长的。如果两种蛋白质的水平相互关联--例如,当其中一种蛋白质的水平较高时,另一种蛋白质的水平也总是较高--这就表明这两种蛋白质是作为伙伴作用的。破坏这种相互作用可能是阻止肿瘤生长的一种有效方法。这些研究(包括丁和布罗德研究所的加德-格茨博士共同领导的一项研究)还揭示了通过化学改变蛋白质以改变其功能的不同方法。研究人员记录了这种化学变化--称为乙酰化和磷酸化的过程--如何改变DNA修复、改变免疫反应、改变DNA的折叠和包装方式,以及其他可能在癌症发生过程中发挥作用的重要分子变化。这项研究还揭示了免疫疗法的有效性。检查点抑制剂等免疫疗法通常对突变较多的癌症最有效,但即便如此,它们也并非对所有患者都有效。研究人员发现,大量突变并不总是导致异常蛋白质的大量存在,而异常蛋白质正是免疫系统攻击肿瘤的目标。丁说:"对某些癌症来说,即使突变有可能产生肿瘤抗原,但如果没有异常蛋白表达或表达很少,这种突变就可能不是治疗的靶点。这可以解释为什么有些病人对免疫疗法没有反应,即使他们似乎应该对免疫疗法有反应。因此,我们的蛋白质组学调查涵盖了肿瘤抗原的表达谱,对于设计针对选定突变的新免疫疗法特别有用。"在另一项研究中,丁的团队确定了DNA甲基化模式,这是另一种能影响基因表达方式的化学变化。这种模式可能是癌症的关键驱动因素。在一项重要发现中,研究小组确定了在某些肿瘤类型中抑制免疫系统的分子开关。这组四项研究的最后一篇论文向更广泛的研究界提供了联盟使用的数据和分析资源。她说:"总的来说,这种对多种癌症类型进行的彻底蛋白质组学和化学修饰分析--与我们长期积累的癌症基因组学知识相结合--提供了另一层信息,我们希望这些信息能帮助解答癌症是如何生长并设法躲避我们的许多最佳治疗方法的许多持续存在的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377313.htm手机版:https://m.cnbeta.com.tw/view/1377313.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人