研究人员发现可以替换自放电效应的PET胶带来帮助延长电池寿命

研究人员发现可以替换自放电效应的PET胶带来帮助延长电池寿命达尔豪斯大学的一名研究人员已经发现了一个令人惊讶的常见的罪魁祸首,PET胶带,如果被取代,可以解决该行业的一个持久问题,PET是一种广泛用于包装和汽水瓶的坚固、轻便的塑料。"在商业电池中,PET胶带将电极固定在一起,这种胶带会发生化学分解,从而产生一种导致自放电的分子,"物理和大气科学系的助理教授兼赫兹伯格-达恩主席迈克尔-梅茨格说。"在我们的实验室里,我们做了许多高度复杂的实验来改进电池,但这次我们发现了一个非常简单的东西这是一个非常简单的东西--它存在于每个塑料瓶中,没有人会想到这对锂离子电池的降解方式有如此巨大的影响。"这两项研究发表在《电化学学会杂志》上。一个意外的发现梅茨格博士和他的同事想了解锂离子电池单元自我放电的原因。作为研究的一部分,他们将几个电池暴露在不同的温度下后打开了它们。他们惊愕地看到,电池中的电解质溶液是鲜红色的,这是他们以前从未见过的。然后他们开始探索原因,将装有普通电解质溶液的细胞放入四个不同温度的烤箱。一个在25摄氏度的样品仍然是透明的,而55摄氏度的样品是浅棕色的,最高的一个在70摄氏度的样品是血红色的。他们做了一个化学分析,查看了电解质的化学成分。这时他们发现,胶带中的聚对苯二甲酸乙二醇酯(或称PET)会分解并产生导致自放电的分子。该分子可以运动到电极的正极,然后到负极,然后再回到正极。因此,它在电极之间穿梭,从而产生自放电,就像电池里的锂应该做的那样。问题是,穿梭分子在后方一直在做这件事,甚至当电池没有工作时也在"孜孜不倦"地放电。他说:"这是我们从未预料到的,因为没有人关注这些非活性成分,电池单元中的这些胶带和塑料箔在当下是必须的,但如果想限制电池单元中的副反应,它确实需要被考虑替换掉。"研究人员在两篇新论文中概述了他们的发现,并引起了寻求改善其电池性能的工业巨头的注意。梅茨格博士最近访问了美国一家依赖可靠的长效电池的公司,在听说了梅茨格博士的新发现后,被问到了胶带问题。"自放电对他们来说是一个超级重要的指标,"梅茨格博士说。"其中一位工程师说,'我听说你们发现了PET胶带的问题。所以,我向他解释说,它导致了这种自放电,并问他,'你在电池中使用什么?他说,'PET胶带'。"该信息可能会带来一种修复方法,可能涉及用一种更稳定、不会降解的材料取代PET胶带。"这是一个具有商业意义的发现。梅茨格说:"这是一件小事,但它绝对可以帮助改善电池单元。"...PC版:https://www.cnbeta.com.tw/articles/soft/1342137.htm手机版:https://m.cnbeta.com.tw/view/1342137.htm

相关推荐

封面图片

一个简单的胶带开关就能防止电池自放电

一个简单的胶带开关就能防止电池自放电在组装商用锂离子电池时,会使用聚对苯二甲酸乙二醇酯(PET)胶带来防止电极堆松开。虽然这种聚合物的机械和电气性能很好,但加拿大达尔豪西大学的科学家们指出,它的化学稳定性在很大程度上被忽视了。在这些研究人员进行的测试中发现,当PET接触到碳酸二甲酯(锂离子电池中最常用的电解质溶剂之一)时,它会解聚成其单体分子对苯二甲酸二甲酯。对苯二甲酸二甲酯是一种"不需要的氧化还原梭子",其基本含义是缓慢而稳定地从锂离子电池中吸取电子。因此,即使为其供电的设备闲置不用,电池也会自我放电。经过实验,科学家们发现,与PET不同,聚丙烯在碳酸二甲酯的存在下仍然保持稳定。随后的测试表明,在锂离子电池中使用市售的聚丙烯胶带代替PET时,自放电减少了70%,电池寿命延长了10%。研究人员指出,对于电池制造商来说,改用聚丙烯胶带应该是一个简单易行的过程。由博士生阿努-亚当森(AnuAdamson)和副教授迈克尔-梅茨格(MichaelMetzger)领导的这项研究的论文最近发表在《自然材料》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1387847.htm手机版:https://m.cnbeta.com.tw/view/1387847.htm

封面图片

复旦大学发明钙-氧室温充电电池 700次充放电循环寿命

复旦大学发明钙-氧室温充电电池700次充放电循环寿命2024年2月7日,相关成果以《室温下可充钙-氧气电池》(Arechargeablecalcium-oxygenbatterythatoperatesatroomtemperature)为题,在线发表于《自然》(Nature)主刊。据介绍,在基于金属钙的电池中,钙-氧气电池具有最高的理论能量密度,但一直不能在室温下稳定充放电其中的关键问题和挑战在于,钙金属负极具有高电化学活性,容易导致电解液被还原分解,并在电极表面形成钝化层,使得钙金属负极失效;同时,空气正极具有高电极电势,容易导致电解液氧化分解,正极电化学性能迅速衰退。目前仍难以找到一种能与钙金属负极相匹配,且能适应高电极电势空气正极的电解质,严重制约了钙-氧气电池的发展。为了解决这一挑战,复旦大学团队通过系统设计溶剂、电解质盐、电解质配比,成功制备出一种基于二甲基亚砜/离子液体的新型电解质,有效满足了电池正负极的高要求,构建了可室温工作的新型钙-氧气电池。这种新型钙-氧气电池主要由三个部分构成:金属钙负极、碳纳米管空气正极、有机电解质。它不仅优化了性能和成本,也兼顾了环境的可持续性与在柔性电子设备中的应用要求。其中,金属钙负极不仅成本较低,还具有较高的理论容量,有利于全电池实现较高的能量密度。同时,可进一步将金属钙负载到柔性基底上,得到柔性的金属钙负极,为实现柔性钙-氧气电池奠定基础。电解质采用基于二甲基亚砜/离子液体体系,在室温下不仅表现出了高离子导率,还展示了稳定的电化学特性,显著提升了电池的整体安全性。正极材料则采用了较为环保的碳材料,不含昂贵的贵金属催化剂,并利用空气中的氧气作为反应物,有助于降低电池的制造成本。在室温条件下,这种新型钙-氧气电池能实现放电产物的可逆生成和分解,充放电循环寿命长达700次。在此基础上,该研究团队还成功构建出同时具有高柔性和高安全性的钙-氧气电池,为柔性电池发展提供了新思路。钙金属具有低氧化还原电位和多价性等特性,结合我国丰富的钙资源,基于金属钙的电池体系在未来的能源应用中具有广阔前景。...PC版:https://www.cnbeta.com.tw/articles/soft/1416945.htm手机版:https://m.cnbeta.com.tw/view/1416945.htm

封面图片

斯坦福研发新的充电方法 可使锂电池组寿命至少延长20%

斯坦福研发新的充电方法可使锂电池组寿命至少延长20%无论哪种情况,平均单体电池的寿命比平均电池组的寿命长,而正是这些脆弱的电池使整个电池组工作效率低下。斯坦福大学Doerr可持续发展学院能源科学工程助理教授西蒙娜-奥诺里(SimonaOnori)说:"如果不妥善处理,电池单元之间的异质性会损害电池组的寿命、健康和安全,并诱发电池组的早期故障,"她是一项新研究的作者,旨在使锂电池组的使用寿命更长。快速充电和放电事件对电池单元来说是一种压力,虽然它们被设计成可以承受这种压力,但这些是较弱的电池受到影响和恶化最快的时刻。因此,斯坦福大学的研究小组想知道,以同样的速度给所有电池单元充电的标准技术是否会加速电池的损坏。研究人员设计了一个计算机模型,在一个加速的时间框架内测试他们的理论,结果他们认为这是一个前所未有的模拟细节水平。他们试图准确地代表电池的物理和化学状态,以及在其整个生命周期中与一系列压力有关的变化,包括在几秒钟内发生的变化,一直到可能需要几个月或几年的其他变化。Onori说:"据我们所知,以前的研究没有使用过我们创建的那种高保真度、多时间尺度的电池模型。"利用这个模型,他们进行了一些模拟,比较了标准的、设定速率的充电方法和其他方法,其中每个电池的容量作为一个指标,说明它能承受多少充电功率。这里的理论是,只有最强壮的电芯应该受到最高的压力;已经开始提前退化的电芯不管是什么原因都应该被更温和地对待,希望能延缓它们最终的衰退。该团队发现,通过单独设置每个电池的充电速率,他们可以最大限度地减少温度上升和电池退化,以至于这些电池组可以比均匀充电的电池多处理至少20%的充电/放电周期--甚至使用频繁的快速充电。但缺点也是相当明显的;如果你正在给你的电动车或手机电池快速充电,当然希望它尽可能快地充电,这样你就可以回到你正在做的任何事情上,在这样的模式下,你的电池中一定数量的电池根本不会像平时那样快速充电。如果你把你的电池看作是或多或少的一次性物品,而你的汽车是每隔几年就会被更换的东西,很多消费者不会关心他们是否在加速他们电池组的死亡,因为这是厂家和维修方的问题。电池组中的大多数电池通常情况都很好,有能力进行快速充电。因此,在这种充电模式下,在快速充电器上充电半小时后,充电状态的差别可能不会很大,如果电池可以被"哄骗"到更长的使用寿命,这对每个人来说都是更好的,因为提前更换的锂电池预计在未来几十年将对全球脱碳工作造成压力。研究人员说,他们的充电模型可以很容易地通过现有的电动汽车设计推出,或用于指导下一代电池管理系统的开发。他们还建议,同样的模型可以应用于放电周期,对较弱的电池要求较少,对较强的电池要求较多,以进一步提高任何受到高应力负载的电池组的寿命。事实上,该研究的作者之一现在在eVTOL开发商ArcherAviation担任电池研究员。"锂离子电池已经在很多方面改变了世界,"Onori说。"重要的是,我们要尽可能多地从这项变革性技术及其后续技术中得到好处。这项研究发表在《IEEE控制系统技术期刊》上。了解更多:https://news.stanford.edu/2022/11/07/longer-lasting-battery-make-cell/...PC版:https://www.cnbeta.com.tw/articles/soft/1332125.htm手机版:https://m.cnbeta.com.tw/view/1332125.htm

封面图片

新的充电算法可将锂离子电池的寿命延长一倍

新的充电算法可将锂离子电池的寿命延长一倍柏林亥姆霍兹中心(HZB)和柏林洪堡大学的一个欧洲研究小组开发出一种替代充电方案,使锂离子电池的寿命比现在更长。研究结果表明,通过改变充电器向电解质材料输送电流的方式,电池在经过数百次放电-充电循环后仍能保持较高的能量容量。锂离子电池是一种结构紧凑、坚固耐用的能源容器,已成为人们的宠儿。电动汽车和电子设备都依赖于它们,但随着电解质穿过分隔阳极和阴极的薄膜,它们的容量会逐渐降低。目前最好的商业级锂离子电池使用的电极由一种名为NMC532的化合物和石墨制成,使用寿命长达8年。传统的充电方式是使用恒定电流(CC)的外部电能。研究分析了使用CC充电时电池样品的情况,发现阳极的固体电解质界面(SEI)"明显变厚"。此外,他们还在NMC532和石墨电极结构中发现了更多裂纹。较厚的SEI和电极上较多的裂缝意味着锂离子电池容量的显著损失。因此,研究人员开发了一种基于脉冲电流(PC)的充电协议。使用新的PC协议对电池充电后,研究小组发现SEI接口变薄了很多,电极材料发生的结构变化也更少。研究小组利用欧洲两个领先的粒子加速同步加速器设施"BESSYII"和"PETRAIII"进行了脉冲电流充电实验。他们发现,PC充电可促进石墨中锂离子的"均匀分布",从而减少石墨颗粒中的机械应力和裂纹。该方案还能抑制NMC532阴极的结构退化。研究表明,方波电流的高频脉冲效果最好。测试表明,PC充电可使商用锂离子电池的使用寿命延长一倍,容量保持率达到80%。这项研究的共同作者、柏林工业大学教授JuliaKowal博士说:"脉冲充电可以在电极材料和界面的稳定性方面带来许多优势,并大大延长电池的使用寿命。"...PC版:https://www.cnbeta.com.tw/articles/soft/1427548.htm手机版:https://m.cnbeta.com.tw/view/1427548.htm

封面图片

从山洞到电池:钟乳石、石笋启发研究人员打造更持久的电池

从山洞到电池:钟乳石、石笋启发研究人员打造更持久的电池固态电池在未来可以提供许多优势,包括用于电力驱动的汽车这些问题的一个新兴解决方案可能是使用"固态电池"。这些电池通过用陶瓷离子导体等完全的固体材料取代液体核心(称为电解质),与常规电池不同。因此,它们提供了大量的好处,如机械坚固、不可燃、易于小型化和抗温度波动。但是,固态电池在几次充电和放电循环后显示出它们的问题:虽然电池的正负极在开始时仍是相互电离的,但它们最终会通过电池内部过程相互电离:"锂枝晶"在电池中慢慢生长。在每次充电过程中,这些锂树枝状物一步一步地生长,直到两极连接。其结果是:电池被短路并"死亡"。然而,到目前为止,在这一过程中发生的确切物理过程还没有得到很好的理解。由汉斯-于尔根-巴特部门的吕迪格-伯格领导的一个团队现在已经解决了这个问题,并使用一种特殊的显微镜方法来更详细地调查这些过程。他们调查了锂枝晶开始生长的位置问题。是否像在石洞中,钟乳石从上方生长,石笋从地上生长,直到它们在中间结合,形成所谓的"石笋"?电池中没有顶部和底部--但枝晶是从负极向正极生长还是从正极向负极生长?或者它们从两极同样生长?还是说电池中有一些特殊的地方导致了树突的成核,然后从那里开始树突生长?RüdigerBerger的团队特别研究了陶瓷固体电解质中所谓的"晶界"。这些边界是在固体层的生产过程中形成的:陶瓷晶体中的原子基本上是非常有规律的排列。然而,由于晶体生长过程中的微小随机波动,在原子排列不规则的地方形成了线状结构--所谓的"晶界"。这些晶界通过他们的显微镜方法--"开尔文探针力显微镜"--可以看到,在这种方法中,用一个锋利的尖端扫描表面。与RüdigerBerger合作的博士生ChaoZhu说:"如果固态电池被充电,开尔文探针力显微镜看到电子沿着晶界聚集--尤其是在负极附近"。后者表明,晶界不仅改变了陶瓷的原子排列,也改变了其电子结构。由于电子的积累--即负粒子--在固体电解质中旅行的带正电的锂离子可以被还原成金属锂。其结果是:锂沉积和枝晶的形成。如果重复充电过程,枝晶将继续增长,直到最后电池的两极被连接。只在负极观察到这种树枝状物生长的初始阶段的形成--也只在这一极观察到。在相反的正极没有观察到生长。科学家们希望,随着对生长过程的精确理解,他们也将能够开发出有效的方法来防止或至少限制负极的生长,以便在未来,更安全的固态锂电池也可以应用。...PC版:https://www.cnbeta.com.tw/articles/soft/1360083.htm手机版:https://m.cnbeta.com.tw/view/1360083.htm

封面图片

研究人员发现一种错误的RNA处理方式反而能带来延长蠕虫寿命的突变现象

研究人员发现一种错误的RNA处理方式反而能带来延长蠕虫寿命的突变现象"我们在蠕虫试验中发现了一个叫做PUF60的基因,它参与了RNA剪接并调节寿命,"做出这一发现的马克斯·普朗克科学家黄文铭博士说。这个基因的突变导致不准确的剪接和某些RNA内的内含子的保留。因此,从这种RNA产生的相应蛋白质较少。令人惊讶的是,具有PUF60基因突变的蠕虫的存活时间明显长于正常蠕虫。蛔虫Caenorhabditiselegans是衰老研究中的一个重要模型生物。图片中的蠕虫被标记为GFP::RNP-6。资料来源:马克斯-普朗克老龄化生物学研究所特别受到这种缺陷生产影响的是一些在mTOR信号通路中发挥作用的蛋白质。这一信号途径是食物可用性的一个重要传感器,并作为细胞代谢的控制中心。长期以来,它一直是衰老研究的重点,是潜在抗衰老药物的目标。研究人员还能够在人类细胞培养物中显示,PUF60活性水平的降低导致mTOR信号通路的活性降低。"我们认为,通过改变RNA中内含子的命运,我们发现了一种调节mTOR信号传导和长寿的新机制,"领导这项研究的马克斯-普朗克主任AdamAntebi说。"有趣的是,也有人类患者的PUF60基因发生了类似的突变。这些患者有生长缺陷和神经发育紊乱。也许在未来,这些病人可以通过服用控制mTOR活性的药物得到帮助。但当然,这需要更多的研究"。了解更多:https://www.nature.com/articles/s43587-022-00275-z...PC版:https://www.cnbeta.com.tw/articles/soft/1332107.htm手机版:https://m.cnbeta.com.tw/view/1332107.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人