科学家在"闪电化石"中发现奇怪的新物质

科学家在"闪电化石"中发现奇怪的新物质在2012年夏天的一场雷雨中,闪电击中了佛罗里达州新里奇港的一棵树,闪电熔化了树根周围的土壤和沙子,形成了一种被称为弗古拉石的结构,外号"闪电化石"。该物业的业主发现并将闪电石卖给了南佛罗里达大学(USF)的地质科学家马修-帕塞克。由于雷击的极端能量所产生的奇怪的化学反应,闪电石可以成为耐人寻味的矿物宝藏。而当南加州大学的研究小组打开这块石头时,他们发现了一种奇怪的亚磷酸钙的新形式。帕塞克说:"我们从未见过这种材料在地球上自然出现--在陨石和太空中可以找到类似的矿物,但我们从未在任何地方见过这种确切的材料。"通过详细检查这块被雷劈后的石头,研究小组拼凑出了这种材料可能的形成过程。众所周知,在佛罗里达这样的潮湿地区,铁会在树根周围积聚,而雷击导致铁燃烧,并与树根周围沙子中的硅融合。同时,树本身的碳也燃烧了,这些元素一起发生了化学反应,形成了闪电化石和其中新的亚磷酸盐材料。当研究小组试图在实验室里重新创造这种新材料时,他们无法得到正确的配方。这表明这种材料的形成需要非常特殊的条件,例如如果加热时间过长,它就会变成陨石中发现的类似矿物。该团队计划继续调查这种材料,以弄清它是否有资格作为一种新的矿物被正式宣布。这项研究发表在《自然-通讯-地球与环境》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1354359.htm手机版:https://m.cnbeta.com.tw/view/1354359.htm

相关推荐

封面图片

科学家在树木化石中发现意想不到的独特树冠结构

科学家在树木化石中发现意想不到的独特树冠结构Sanfordiacaulis模型,简化了分支结构,以便于可视化。请注意,人类是为比例尺而提供的,但并不与树同时存在。资料来源:TimStonesifer缅因州沃特维尔科尔比学院的罗伯特-加斯塔多说:"这棵树在其骨瘦如柴的树干上长出了长长的叶子,而且在短短的树干上长出的叶子数量之多令人吃惊。"他解释说,这些3.5亿年前的树木的形态看起来有点像蕨类植物或棕榈树,尽管棕榈树是在3亿年后才出现的。不过,蕨类植物或棕榈树的功能叶子都集中在顶部,而且数量相对较少。"相比之下,Sanfordiacaulis树干周围保留了250多片树叶,每片部分保留下来的树叶距离树干1.75米,"加斯塔多说。"我们估计,每片叶子至少再长一米才会终止。这意味着'瓶刷'有一个茂密的树冠,树叶在树干周围至少延伸了5.5米(或18英尺),而树干是非木质的,直径只有16厘米(或0.5英尺)。至少可以说是令人吃惊的"。这项工作得益于与圣约翰新不伦瑞克博物馆的马修-史汀生(MatthewStimson)和奥利维亚-金(OliviaKing)以及哈利法克斯圣玛丽大学的长期国际合作。研究人员的发现为植物的进化和乔木化提供了重要启示,乔木化指的是植物长到树高,或者成熟时至少有15英尺高。研究人员说,这些发现还提醒我们,在地球生命的历史长河中,曾经存在过一些我们从未见过的树木,有些看起来就像是来自苏斯博士的想象。Sanfordiacaulisdensifolia化石(比例尺为1米)。资料来源:马修-史汀生加斯塔多说:"我们都有一个关于树的心理概念,这取决于我们生活在地球上的哪个地方,我们对熟悉的事物都有一个憧憬。我们报告的化石是独一无二的,是生命史上一种奇特的生长形式。它是森林植物经历生物多样化时期的进化实验之一,而且这种形态似乎寿命很短。"这些化石是由于地震引发的灾难性地震掩埋了裂谷湖边缘的树木和其他植被而保存下来的。大约7年前,第一个树木化石从一个采石场出土,但其中只有一个部分样本。加斯塔多说,又过了几年,才发现了另外四种空间距离很近的同一种植物的标本。其中一个标本揭示了树叶是如何离开树顶的,这使得它"绝对独一无二"。研究人员说,在长达4亿多年的化石记录中,只有少数树干被保存了下来,而树冠上的树叶仍然附着在树干周围。"任何树冠完整的化石在生命史上都是罕见的,"加斯塔多说。"树冠叶片附着在树干上,这本身就引出了一个问题:这是一种什么样的植物,这种植物是如何组织的,它是一种延续至今的形式,还是超出了'正常'的树的概念?所有这些问题,以及更多问题,都促成了这项历时多年的工作"。研究人员报告说,这棵树很可能依靠其不同寻常的生长形式来最大限度地捕捉光照,减少与地面上其他植物的竞争。他们认为,这棵树现在代表了较小的树木生长在较高的林冠下的最早证据。这意味着早石炭纪时期的植物生活比预期的要复杂得多,表明桑福迪卡利斯生活在植物"试验"各种可能的形态或结构的时代。"陆地上的生命史由动植物组成,它们与目前生活的任何生物都不同,"加斯塔多说。"过去深处的进化机制导致生物成功地生活了很长时间,但它们的形状、形态、生长结构和生活史却有着不同的轨迹和策略。罕见和不寻常的化石,如来自新不伦瑞克的这一案例只是殖民我们星球但却不成功的实验的一个例子"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1419845.htm手机版:https://m.cnbeta.com.tw/view/1419845.htm

封面图片

超导突破:科学家发现量子物质的新状态

超导突破:科学家发现量子物质的新状态这种"自旋三重电子对晶体"是一种以前未知的拓扑量子物质状态。这一发现最近发表在《自然》杂志上。顾强强是在文理学院詹姆斯-吉尔伯特-怀特杰出荣誉教授、物理学家J.C.SéamusDavis实验室工作的博士后研究员,他与科克大学学院的乔-卡罗尔和牛津大学的王树秋共同领导了这项研究。当配对电势呈现奇奇偶性时,超导体就是拓扑超导体,这会导致每个电子对采用自旋三重态,两个电子自旋的方向相同。顾强强介绍说,拓扑超导体是物理学家们热衷研究的对象,因为从理论上讲,它们可以构成超稳定量子计算机的材料平台。然而,即使对拓扑超导进行了长达十年的深入研究,除了同样在康奈尔大学发现的超流体3He之外,还没有任何块体材料被明确认定为自旋三奇偶超导体。最近,一种奇特的新材料--二碲化铀(UTe2)成为这种分类的极有希望的候选者。然而,它的超导阶参数仍然难以捉摸。2021年,理论物理学家开始提出,UTe2实际上处于拓扑对密度波(PDW)状态。此前从未探测到过这种形式的量子物质。简单地说,拓扑对密度波就像超导体中的成对电子的静态舞蹈,但这些成对电子在空间中形成周期性的晶体图案。"我们康奈尔大学的团队在2016年利用我们为此发明的超导尖端扫描约瑟夫森隧穿显微镜发现了有史以来观测到的第一个PDW,"顾说。"从那时起,我们开创了在毫开尔文温度和微伏能量分辨率下的SJTM研究。在UTe2项目中,我们直接观察到了超导配对势在原子尺度上的空间调制,并发现它们的调制完全符合PDW状态下电子对密度在空间周期性调制的预测。我们探测到的是一种新的量子物质态--由自旋-三重库珀对组成的拓扑对密度波"。库珀对密度波是电子量子物质的一种形式,其中电子对凝固成超导PDW态,而不是形成传统的"超导"流体,在这种流体中,所有电子对都处于相同的自由运动状态。顾强强说:"在自旋三重超导体中首次发现PDW令人兴奋。铀基重费米子超导化合物是一类新颖奇特的材料,为实现拓扑超导提供了一个前景广阔的平台。......我们的科学发现还指出了这种有趣的量子态在s波、d波和p波超导体中无处不在的性质,并为在广泛的材料中识别这种状态提供了新的途径。"...PC版:https://www.cnbeta.com.tw/articles/soft/1380305.htm手机版:https://m.cnbeta.com.tw/view/1380305.htm

封面图片

科学家在2亿年前的粪便化石中发现古代寄生虫

科学家在2亿年前的粪便化石中发现古代寄生虫在泰国猜也奔府NongYakong村采集的铜绿岩。图片来源:Nonsrirach等人,CC-BY4.0寄生虫是生态系统中常见的重要组成部分,但由于化石记录较少,很难对古代寄生虫进行研究。寄生虫通常栖息在宿主的软组织中,而这些软组织很少保存为化石。不过,也有在粪便化石(桡骨化石)中发现寄生虫痕迹的情况。在这项研究中,Nonsrirach及其同事描述了在泰国怀欣拉特地层的一块晚三叠世桡足石(距今已有2亿多年的历史)中发现寄生虫的证据。这块桡足石呈圆柱形,长度超过7厘米。根据它的形状和内容物,研究人员认为它很可能是由某些种类的植龙目产生的,植龙目是类似鳄鱼的食肉动物,在这个化石地点也有发现。对桡龙石薄片的显微分析发现了六个小的圆形有机结构,长度在50-150微米之间。其中一个椭圆形的厚壳结构被确认为寄生线虫的虫卵,其他的似乎是其他虫卵或身份不明的原生动物囊肿。这是亚洲三叠纪晚期陆生脊椎动物宿主体内寄生虫的首次记录,也是对明显受到多种寄生虫感染的古代动物生活的罕见一瞥。这一发现也增加了中生代动物桡骨内保存的线虫卵的已知实例。因此,这些发现是对科学认识远古寄生虫分布和生态学的重大贡献。作者补充说:"桡足石是一个重要的古生物宝库,其中包含多种未被发现的化石,拓展了我们对古代生态系统和食物链的认识"。...PC版:https://www.cnbeta.com.tw/articles/soft/1376413.htm手机版:https://m.cnbeta.com.tw/view/1376413.htm

封面图片

科学家在柑橘类水果中发现新甜味增强化合物

科学家在柑橘类水果中发现新甜味增强化合物佛罗里达大学食品和农业科学研究所的科学家们在柑橘类水果中发现了八种天然甜味增强化合物。该研究表明,这些分子可能作为食品中的糖替代品而发挥作用。这项新研究的重点是在不同品种的柑橘类水果中筛选风味代谢物,其目的是为了识别天然甜味剂或甜味增强的化合物。PC版:https://www.cnbeta.com/articles/soft/1321143.htm手机版:https://m.cnbeta.com/view/1321143.htm

封面图片

科学家在五层石墨烯中发现奇异的新电子态

科学家在五层石墨烯中发现奇异的新电子态五层石墨烯堆栈中的电子呈现出奇特的多铁性新状态的艺术家印象图石墨烯本质上只是一块超薄的普通石墨薄片--事实上,它薄到只有一个原子厚。但是,尽管石墨烯的起点如此卑微,它却具有超强、超导、柔韧等特性,并有望彻底改变从电子产品、服装到航空航天工程等一切领域。当你开始堆叠石墨烯薄片,甚至将它们扭曲到特定角度时,其他非凡的能力就会显现出来,比如磁性或超强的透水性。在新的研究中,麻省理工学院的研究小组又发现了另一种材料--"多铁性行为",这在材料界是非常罕见的。铁性材料是指其粒子具有协调行为的材料--例如,磁铁的所有电子即使在没有外部磁场的情况下也会将自旋指向同一方向。多铁性材料是指显示出不止一种协调行为的材料,例如,磁性指向一个方向,而电荷指向另一个方向。研究人员计算出,在非常特殊的情况下,石墨烯应该成为多铁性材料。从理论上讲,只有当五层石墨烯叠放在一起,每层略有偏移,使三维整体形成菱形时,才会出现多铁性。在五层石墨烯中,电子恰好处于晶格环境中,它们的移动速度非常缓慢,因此可以有效地与其他电子相互作用。这时电子相关效应开始占主导地位,它们可以开始协调成某些优先的铁氧体秩序。接下来,研究小组开始在实践中证实这一理论,他们从石墨块上刮下石墨烯薄片,并用强力显微镜进行检查,以找到一些自然具有理想菱形形状的石墨烯。然后,他们将发现的几种石墨烯分离出来,在略高于绝对零度的温度下进行研究,在这种温度下,其他效应会减弱,因此只有他们正在寻找的石墨烯才能发光。果然,研究小组发现,这些特殊薄片中的电子对一个方向的电场和另一个方向的磁场反应一致,证实了多铁行为。但即使是这些单独的行为也是不寻常的--磁性产生于电子轨道运动的协调,而不是它们的自旋。电子行为产生于电子优先进入一个"谷"(或最低能量状态),而不是平均进入两个谷。因此,研究小组将这种奇特的电子状态称为"铁谷性"。"我们知道在这种结构中会发生一些有趣的事情,但我们不知道具体是什么,直到我们进行了测试,"该研究的共同第一作者卢正光说。"这是我们第一次看到铁谷电子学,也是我们第一次看到铁谷电子学与非常规铁磁体共存"。研究人员说,这种奇特的行为最终可以被利用来有效地将芯片的数据存储容量提高一倍。这项研究发表在《自然》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1390923.htm手机版:https://m.cnbeta.com.tw/view/1390923.htm

封面图片

科学家在距今1200万年前的蜗牛壳化石中发现第一种多烯色素

科学家在距今1200万年前的蜗牛壳化石中发现第一种多烯色素彩色蜗牛壳化石(左)和现代蜗牛壳(右边的大标本)。图片来源:KlausWolkenstein这使得哥廷根大学和维也纳自然历史博物馆(NHMW)的研究人员的这一新发现更加令人吃惊:他们在距今1200万年前的蜗牛壳化石中发现了色素。这是世界上首次在化石中发现的几乎原封不动保存下来的多烯类色素。这项研究发表在《古生物学》杂志上。奥地利Nexing中新世沉积物中的Pithocerithiumrubiginosum贝壳化石(高1.5厘米)(左)和氟化钙圆盘(圆盘直径2厘米)上分离出的红色多烯色素(右)。资料来源:KlausWolkensteinNHMW的古生物学家在奥地利布尔根兰州发现了蜗牛超科Cerithioidea的蜗牛壳。这些蜗牛生活在一千二百万年前的热带海边。参与这项发现的NHMW教授马蒂亚斯-哈扎豪泽(MathiasHarzhauser)解释说:"他说:"目前还不清楚这些淡红色的花纹是来自原始的贝壳,还是后来在沉积物中形成的。哥廷根大学地球科学中心的研究人员解开了这个谜团。他们利用拉曼光谱分析了这些色素。这包括用激光照射样品。样品反射出的散射光可以用来清楚地识别化合物。他们在贝壳化石中检测到了属于多烯类化学物质的色素。这些有机化合物包括众所周知的"类胡萝卜素",例如,鸟类羽毛、胡萝卜和蛋黄中鲜艳的红色、橙色和黄色就是由类胡萝卜素产生的。领导这项研究的克劳斯-沃肯斯坦(KlausWolkenstein)博士多年来一直在哥廷根大学研究化石颜料的化学性质:"通常情况下,经过这么长的时间,我们所能希望的是这些化学物质降解产物的痕迹。但是,如果降解,这些化合物就会失去颜色。因此,在距今1200万年前的化石中发现这些几乎完好无损的色素确实令人惊讶。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1426721.htm手机版:https://m.cnbeta.com.tw/view/1426721.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人