特殊的细胞穿透肽为下一代基因编辑技术提供了可能

特殊的细胞穿透肽为下一代基因编辑技术提供了可能CRISPR是细菌免疫系统的一个组成部分,可以切割DNA;它被重新利用作为基因编辑工具。科学家们设计了一种引导RNA,以匹配他们想要编辑的基因,并将其附加到CRISPR相关蛋白(Cas)上。引导RNA将Cas引导到目标基因,在那里它就像"分子剪刀"一样,剪断麻烦的DNA。但尽管有这么多好处,该技术很难进入原生细胞,即直接从活体组织或器官中提取并在实验室中生长的细胞。T细胞是人体免疫系统的一部分,是初级细胞的例子。在发现一些病毒使用蛋白质片段--肽--进入细胞后,宾夕法尼亚大学的研究人员测试了他们是否可以使用这种方法将CRISPR基因编辑技术更有效地引入原生细胞。该研究的共同通讯作者ShelleyBerger说:"目前让CRISPR-Cas系统进入细胞的方法,包括使用载体病毒和电脉冲,对于直接取自患者的细胞(称为原生细胞)来说,效率很低。这些方法通常也会杀死它们所使用的许多细胞,甚至会导致基因活动出现广泛的不必要的变化"。研究人员使用肽来引导CRISPR-Cas9和Cas12a分子穿过人类和小鼠原生细胞的外膜,并进入它们的细胞核,即细胞的大部分DNA所在的地方。他们发现,使用两种改性肽的组合,一种在艾滋病毒中发现,一种在流感病毒中发现,与CRISPR-Cas分子混合,具有接近100%的基因编辑效率,无毒且不会引起基因表达的变化。研究人员称他们的新方法为肽辅助基因组编辑,PAGE,他们说它可能在T细胞相关疗法中特别有用,如嵌合抗原受体(CAR)T细胞疗法,该疗法使用从病人身上提取的特别修改的免疫细胞来治疗血癌。该研究的另一位通讯作者E.JohnWherry说:"这种新方法有可能成为工程细胞疗法的一项重要使能技术。"除了用于细胞和基因治疗外,PAGE还有广泛的应用。该研究的共同通讯作者JunweiShi说:"肽辅助概念的简单性和力量表明,它有可能在未来被用于将其他基因组编辑蛋白,甚至是基于蛋白的药物送入原生细胞。"这项研究发表在《自然-生物技术》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1357623.htm手机版:https://m.cnbeta.com.tw/view/1357623.htm

相关推荐

封面图片

迈向 CRISPR 2.0,下一代基因编辑技术方兴未艾

迈向CRISPR2.0,下一代基因编辑技术方兴未艾据科技日报,美国食品药品监督管理局(FDA)本月稍早时间宣布,批准CRISPR/Cas9基因编辑疗法Casgevy上市,用于治疗12岁及以上镰状细胞贫血病患者。这是FDA批准的首款CRISPR基因编辑疗法。而11月16日,Casgevy已在英国获批上市。美国初创公司PrimeMedicine首席执行官基思・戈特斯迪纳表示,CRISPR/Cas9被认为是CRISPR1.0,其开创了基因编辑新时代,但局限性也非常明显。目前已有一批CRISPR2.0新技术问世,能以比CRISPR1.0更精确、更通用的方式编辑DNA。荷兰鲁汶大学呼吸系统疾病和胸外科实验室肺病专家玛丽安娜・卡隆则表示,CRISPR1.0基因编辑疗法获批,为下一代基因编辑技术走上舞台中央奠定了基础。

封面图片

革命性基因疗法为镰状细胞病患者带来新希望

革命性基因疗法为镰状细胞病患者带来新希望越来越多的证据表明,基因疗法是治疗镰状细胞病的可行方法。根据美国疾病控制和预防中心的数据,约有10万美国人患有镰状细胞病。在美国,每365个出生的黑人婴儿中就有一个患有镰状细胞病,每16300个西班牙裔婴儿中就有一个。直到最近,唯一的治疗方案仍是通过兄弟姐妹或匹配的捐赠者进行密集的骨髓移植。但现在,其他治疗方法也即将问世。芝加哥大学医学中心科默儿童医院是临床试验中招收患者的三个地点之一,该试验测试了治疗镰状细胞病的干细胞基因疗法。作为试验的一部分,研究人员使用CRISPR-Cas9编辑从每位患者身上提取的干细胞(血细胞的组成成分)中的特定基因。这种蛋白质可以替代血液中不健康的镰状血红蛋白,防止镰状细胞病的并发症。然后,患者接受自己编辑的细胞输注治疗。该疗法是第二种使用CRISPR-Cas9技术治疗该疾病的方法,也是第一种针对新的基因区域并使用冷冻保存干细胞的方法,希望能增加这种治疗方法的可及性。其他针对SCD的基因治疗研究使用的是慢病毒--一种经常被修改并用于基因编辑的病毒,可长期存留在细胞中。用CRISPR-Cas9编辑的干细胞中不会残留外来物质。接受CRISPR编辑干细胞的试验参与者报告说,血管闭塞事件减少了,这是一种当镰状红细胞聚集并导致阻塞时发生的痛苦现象。芝加哥大学医学院和科默儿童医院儿科干细胞和细胞疗法项目主任、该研究的资深作者詹姆斯-拉贝尔(JamesLaBelle)医学博士说:"最大的启示是,现在比以往任何时候都有更多可能治愈镰状细胞病的疗法,而不是使用他人的干细胞,因为这样做会带来一系列其他并发症。特别是在过去的10年里,我们已经了解了在治疗这些患者时应该做什么和不应该做什么。我们一直在努力为患者提供不同类型的、毒性较低的移植,现在基因疗法完善了现有的治疗方法,因此每一位镰状细胞病患者在需要时都能得到某种治疗。在芝加哥大学医学院,我们已经建立了基础设施,以支持镰状细胞病治疗的新方法,并为其他疾病带来更多的基因疗法。"随着科学界不断完善和扩大基因疗法的应用范围,治疗镰状细胞病等疾病的潜力正日益成为变革性的现实。虽然这一进程仍在继续,需要长期的跟踪和进一步的研究,但这项研究为未来有效的基因干预提供了令人鼓舞的指引。拉贝尔强调,在更广泛的治疗开发背景下,这项研究对越来越多的证据支持基因疗法作为镰状细胞病治疗手段的可行性具有重要意义。今年,还有两种治疗镰状细胞病的基因疗法正在等待美国食品及药物管理局的批准。"这项试验的数据为镰状细胞病和其他骨髓衍生疾病的类似基因疗法提供了支持。"他说:"如果我们没有这些数据,这些研究就不会取得进展。"编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403041.htm手机版:https://m.cnbeta.com.tw/view/1403041.htm

封面图片

CRISPR 基因编辑疗法获美国 FDA 批准

CRISPR基因编辑疗法获美国FDA批准当地时间12月8日,美国食品药品监督管理局(FDA)在官网发布新闻稿称,批准福泰制药(VertexPharmaceuticals)和瑞士基因编辑公司CRISPRTherapeutics联合开发的CRISPR/Cas9基因编辑疗法Casgevy(exagamglogeneautotemcel,exa-cel)上市,用于治疗12岁及以上患有复发性血管闭塞危象的镰刀型细胞贫血病(SCD)患者。根据新闻稿,Casgevy是FDA批准的首款CRISPR基因编辑疗法。

封面图片

全球首款 CRISPR 基因编辑疗法长期疗效结果公布

全球首款CRISPR基因编辑疗法长期疗效结果公布VertexPharmaceuticals宣布其CRISPR/Cas9基因编辑疗法Casgevy(exagamglogeneautotemcel,exa-cel)在全球临床试验中,用于治疗重度镰刀型细胞贫血病(SCD)或输血依赖性β地中海贫血(TDT)患者的最新长期数据。根据新闻稿,这是全世界首款获批上市的CRISPR基因编辑疗法。

封面图片

CRISPR 基因编辑疗法落地英美欧,现在试图攻克阿尔茨海默病

CRISPR基因编辑疗法落地英美欧,现在试图攻克阿尔茨海默病当地时间11月16日,英国药品和医疗保健产品监管局(MHRA)宣布授权CRISPR/Cas9基因编辑疗法Casgevy(exa-cel)有条件上市,用于治疗镰状细胞病(SCD)和输血依赖性β地中海贫血(TDT)。当地时间12月8日,美国食品药品监督管理局(FDA)批准其用于治疗SCD。当地时间12月15日,欧洲药品管理局(EMA)也批准其上市,用于治疗SCD和TDT。现在,研究人员希望使用CRISPR/Cas9基因编辑疗法来治疗阿尔茨海默病(AD)。当地时间12月11日,《自然》(Nature)杂志发表一篇题为《CRISPR基因编辑如何帮助治疗阿尔茨海默症》(HowCRISPRgeneeditingcouldhelptreatAlzheimer’s)的文章,试图探讨利用CRISPR疗法治疗阿尔茨海默病的可能性。(澎湃新闻)

封面图片

减少不必要的突变 新技术为更安全的基因编辑打开了大门

减少不必要的突变新技术为更安全的基因编辑打开了大门来自日本九州大学和名古屋大学医学院的研究人员开发出了一种优化的基因组编辑方法,它可以大大减少CRISPR-Cas9中不需要的突变和毒性。这种被称为"保障性gRNA"([C]gRNA)的新技术展示了安全和高效基因治疗的潜力,可应用于治疗像纤维发育不良性骨质增生这样的遗传疾病。他们的研究已经发表在《自然-生物医学工程》上。以CRISPR-Cas9为中心的基因组编辑技术已经彻底改变了食品和医药行业。在该技术中,Cas9核酸酶是一种切割DNA的酶,它与合成的引导RNA(gRNA)一起被引入细胞中,引导酶到达所需的位置。通过切割基因组,不需要的基因可以被删除,而新的(功能性)基因可以被轻松而快速地加入进来。基因组编辑的一个缺点是,人们越来越担心突变和脱靶效应。这通常是由于酶瞄准的基因组位点具有与目标位点相似的序列而造成的。同样,当基因被改变时,染色体水平的突变也会发生,这已经阻碍了基因治疗癌症的临床试验,甚至导致接受肌肉萎缩症治疗的病人死亡。该小组假设,目前使用Cas9的编辑协议会造成过度的DNA裂解,从而导致一些突变。为了验证这一假设,由九州大学的MasakiKawamata助理教授和名古屋大学医学研究生院的HiroshiSuzuki教授组成的小组在小鼠细胞中构建了一个名为"AIMS"的系统,该系统对每条染色体分别评估了Cas9的活性。他们的结果显示,常用的方法与非常高的编辑活性有关。他们确定这种高活性导致了一些不必要的副作用,因此他们寻找能够抑制这种活性的gRNA修改方法。他们发现,在gRNA的5′端增加一个额外的胞嘧啶延伸是对过度活性的有效"保障",并允许控制DNA的裂解。他们称这种微调系统为'保障性gRNA'([C]gRNA)"。结果是惊人的,使用他们的新技术后,脱靶效应和细胞毒性减少了,单allele选择性编辑的效率提高了,同源定向修复的效率也提高了,这是DNA双链断裂修复最常用的机制。为了测试其在医疗环境中的有效性,他们研究了一种名为纤维发育不良的罕见疾病。利用小鼠模型,他们能够创造出与人类版本的疾病相同的基因类型。然后,利用患者衍生的iPS细胞,他们能够精确地修复导致该疾病的疾病相关等位基因中具体到单个核苷酸的损伤,证明了他们的技术作为一种安全和高效的基因治疗方法的有用性。该团队还构建了第一个关于各种基因组编辑模式和Cas9活性之间相关性的数学模型,这将使用户能够模拟整个细胞群中基因组编辑的结果。这一突破将使研究人员能够确定使效率最大化的Cas9活性,减少所需的巨大成本和劳动。"我们建立了一个新的基因组编辑平台,通过开发具有适当Cas9活性的活性调节[C]gRNAs,可以最大限度地提高所需的编辑效率。此外,我们发现'保障gRNA'可以通过调节gRNA的活性应用于各种需要gRNA的CRISPR工具,如使用Cas12a的工具,它具有不同的DNA裂解机制,"Suzuki教授说。"对于使用Cas9激活或抑制感兴趣的基因的技术,如CRISPR激活和CRISPR干扰,过度诱导或抑制基因的表达可能没有用,甚至对细胞有害。通过[C]gRNA控制表达水平是一项重要技术,可用于各种应用,包括实施精确的基因治疗"。...PC版:https://www.cnbeta.com.tw/articles/soft/1354925.htm手机版:https://m.cnbeta.com.tw/view/1354925.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人