章鱼胺:大脑的SOS信号在神经退行性中起关键作用

章鱼胺:大脑的SOS信号在神经退行性中起关键作用研究人员揭示了章鱼胺(一种在无脊椎动物中的主要神经递质,在哺乳动物中少量存在)如何与哺乳动物大脑中的细胞相互作用以防止细胞死亡。科学家们发现,当在小鼠大脑皮层的星形胶质细胞培养物中引入一定水平的章鱼胺时,它会触发乳酸的产生,从而促进细胞的生存。这些发现至关重要,因为它们揭示了章鱼酰胺在哺乳动物大脑中的功能,它被比喻为一种SOS信号,促使星形胶质细胞产生能量以防止细胞因ATP短缺而死亡。这一发现可能有助于开发治疗阿尔茨海默病、帕金森病和双相情感障碍等疾病的方法,这些疾病都与辛胺水平失衡有关。资料来源:西北大学尽管在哺乳动物的大脑中仍有微量的章鱼胺,但其功能已被肾上腺素所取代。长期以来,人们认为它是哺乳动物进化过程中的遗留物,但此前人们对章鱼胺在人脑中的作用并不十分了解。在目前的研究中,研究人员首先着手了解占人类中枢神经系统大多数细胞的星形胶质细胞是如何在神经退行性疾病中造成大脑功能障碍的。在来自小鼠大脑皮层的星形胶质细胞培养物中,科学家们发现,引入一定水平的章鱼胺促使星形胶质细胞产生乳酸,促进细胞的生存。KenandRuthDavee神经学部运动障碍科助理教授GabrielaCaraveoPiso博士说:"我们的发现非常重要,因为我们发现了这种微量胺--章鱼胺在哺乳动物大脑中运作的方式。我们可以把它想象成一个SOS信号;受压的神经元向星形胶质细胞发出这个信号,向它们输送能量,输送乳酸。在适当的水平上,章鱼胺允许星形胶质细胞读取这个求救信号并开始制造能量,这将保护细胞不因缺乏ATP而死亡。如果有太多的章鱼胺,那就有点像烟雾阻碍了SOS的方式。它不能被星形胶质细胞所读取"。CaraveoPiso说,这些发现可能有助于为未来治疗阿尔茨海默病、帕金森病和躁郁症提供信息,所有这些疾病都与大脑中的章鱼胺水平失调有关。"长期以来,乳酸被认为是一种废物。但事实证明,它不是,它是一种非常重要的燃料,神经元需要将其转化为更高形式的能量,"CaraveoPiso说。"我们认为这很重要,因为这可能会影响到章鱼酰胺水平改变的其他疾病,包括阿尔茨海默病和精神障碍。"展望未来,Piso和她的合作者希望能更好地了解章鱼胺在健康大脑中的运作方式。"我们现在想知道的是:这是否只发生在类似疾病的条件下?或者说,在学习和记忆等生理条件下,章鱼胺是否发挥作用,在这些条件下,神经元也会经历高能量需求?"CaraveoPiso说。"鉴于章鱼胺可以驾驭星形胶质细胞的乳酸代谢,我们也有兴趣了解在记忆和学习以及衰老这种情况下,乳酸代谢在大脑中的作用。"...PC版:https://www.cnbeta.com.tw/articles/soft/1357665.htm手机版:https://m.cnbeta.com.tw/view/1357665.htm

相关推荐

封面图片

咖啡渣可保护大脑免受神经退行性疾病的侵害

咖啡渣可保护大脑免受神经退行性疾病的侵害首席研究员JyotishKumar说:"基于咖啡酸的碳量子点有可能成为治疗神经退行性疾病的变革性药物。这是因为目前的治疗方法都不能解决疾病问题,它们只能帮助控制症状。我们的目标是通过解决驱动这些疾病的原子和分子基础,找到治疗方法。"虽然遗传在神经退行性疾病中起着重要作用,但生活方式和环境因素也会在很大程度上导致大脑特定区域神经元的丧失,进而发展成阿尔茨海默氏症和帕金森氏症等疾病。这些因素包括过度活跃的自由基(也是导致癌症和心脏病的有害分子),以及淀粉样蛋白片段的聚集。淀粉样蛋白片段会在大脑中形成斑块,这是阿尔茨海默氏症进展的标志。在细胞样本中,研究人员发现CACQDs能清除自由基或阻止自由基的影响,并抑制淀粉样蛋白的聚集。重要的是,CACQDs似乎不会对细胞产生负面影响。如果这种益处能转化为预防性治疗,就能让患者远离疾病进展的临界点。UTEP教授马赫什-纳拉扬(MaheshNarayan)说:"在这些疾病进入临床阶段之前解决它们至关重要。到了那个阶段,很可能为时已晚。目前任何能够解决神经退行性疾病晚期症状的治疗方法都超出了大多数人的承受能力。我们的目标是提出一种解决方案,能够以尽可能多的患者能够承受的成本预防这些疾病的大多数病例。"咖啡酸是一种多酚化合物,具有已知的抗氧化特性。它还能穿透最重要的血脑屏障,这是向需要保护的部位提供细胞保护的关键。除了废咖啡渣是咖啡酸的可持续来源外,CACQD还是通过环保的"绿色化学"生产出来的。咖啡渣在200°F(93°C)的温度下"烹煮"四小时,以调整CACQD咖啡酸碳结构的方向。鉴于每年废弃的咖啡渣数量巨大,这种原料具有可持续性和可扩展性。虽然研究尚处于早期阶段,但研究小组希望进一步的研究能证实早期测试的结果,并希望有一天,像CACQDs药片这样简单的东西能为人类大脑提供一种无形的保护,防止非遗传性神经退行性疾病的发生。这是近几个月来第二项发现咖啡产品对大脑健康有惊人益处的研究。今年9月,研究人员在绿咖啡豆中发现了一种化合物--三尖杉酯碱,它有望帮助维持衰老大脑的记忆和认知功能。这项研究发表在《环境研究》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1398987.htm手机版:https://m.cnbeta.com.tw/view/1398987.htm

封面图片

将大脑免疫细胞转化为神经元有助于中风后的康复

将大脑免疫细胞转化为神经元有助于中风后的康复中风或其他脑血管疾病导致脑部血流不畅后,神经元要么受损,要么死亡,造成特有的生理和心理缺陷。现在,日本九州大学的研究人员将大脑的主要免疫细胞小胶质细胞转化为神经元,从而恢复了受中风影响的小鼠的运动功能。该研究的通讯作者中岛健一说:"当我们被割伤或骨折时,我们的皮肤和骨骼细胞可以复制,从而治愈我们的身体。但我们大脑中的神经元却不容易再生,因此损伤往往是永久性的。因此,我们需要找到新的方法来安置失去的神经元。"研究人员从之前的研究中得知,在健康小鼠的大脑中,小胶质细胞可以被诱导发育成神经元。中风后,负责清除受损或死亡脑细胞的小胶质细胞向受伤部位移动并迅速复制。该研究的第一作者入江隆说:"小胶质细胞数量丰富,而且正好位于我们需要它们的地方,因此它们是理想的转化目标。"研究人员通过暂时阻断右侧大脑中动脉诱导小鼠中风,大脑中动脉是大脑中的主要血管,通常与人类中风有关。一周后,研究人员观察到小鼠的运动功能出现障碍,纹状体中的神经元明显减少,而纹状体是大脑中参与决策、行动规划和运动控制的区域。他们使用慢病毒--一种用作病毒载体的亚类逆转录病毒--将DNA插入中风损伤部位的小胶质细胞。DNA中含有产生NeuroD1的指令,NeuroD1是一种诱导神经元转换的蛋白质。在随后的几周里,这些细胞发育成了神经元。在小胶质细胞中产生NeuroD1蛋白可诱导它们发育成神经元(红色),减少神经元缺失区域(暗斑)。DNA植入三周后,小鼠的运动功能得到改善。到八周时,新诱导的神经元已成功融入大脑回路。当研究人员移除新神经元时,运动功能的改善消失了,这证实了新神经元对小鼠的康复做出了直接贡献。中岛说:"这些结果很有希望。下一步是测试NeuroD1是否也能有效地将人类小胶质细胞转化为神经元,并确认我们将基因插入小胶质细胞的方法是安全的。"由于小鼠是在中风后的急性期接受治疗的,此时小胶质细胞已经迁移到损伤部位,因此研究人员下一步计划观察他们是否能在后期阶段让小鼠产生康复效果。该研究发表在《美国国家科学院院刊》(PNAS)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1391667.htm手机版:https://m.cnbeta.com.tw/view/1391667.htm

封面图片

科学家从章鱼视觉系统的地图中发现大脑进化的新线索

科学家从章鱼视觉系统的地图中发现大脑进化的新线索章鱼大脑的荧光图像显示不同的不同类型的神经元的位置信用:Niell实验室他们在一篇新的科学论文中列出了章鱼视觉系统的详细地图。在该地图中,他们对大脑中专门用于视觉的部分的不同类型的神经元进行了分类。这一结果对其他神经科学家来说是一个宝贵的资源,提供了可以指导未来实验的细节。此外,它还可以让我们更广泛地了解大脑和视觉系统的进化情况。该团队今天(10月31日)在《当代生物学》杂志上报告了他们的发现。CrisNiell在俄亥俄大学的实验室研究视觉,主要是在小鼠身上。但是几年前,博士后JuditPungor给实验室带来了一个新物种--加州双点章鱼。尽管传统上它并不被用作实验室的研究对象,但这种头足类动物很快就引起了俄亥俄大学神经科学家的兴趣。与小鼠不同,小鼠并不以拥有良好的视觉而闻名,"章鱼有一个惊人的视觉系统,它们的大脑中有很大一部分专门用于视觉处理,"Niell说。"它们的眼睛与人类的眼睛非常相似,但在那之后,大脑就完全不同了。"章鱼和人类的最后一个共同祖先是在5亿年前,此后,这些物种在非常不同的环境中进化。因此,科学家们不知道视觉系统的相似之处是否超出了眼睛的范围,或者章鱼是否反而使用了完全不同种类的神经元和大脑回路来实现类似的结果。"看到章鱼的眼睛如何与我们的眼睛相似地进化,思考章鱼的视觉系统如何能够成为更普遍地理解大脑复杂性的模型是一件很酷的事情,"Niell实验室的研究生和该论文的第一作者MeaSongco-Casey说。"例如,是否有基本的细胞类型是这种非常聪明、复杂的大脑所需要的?"在这里,研究小组使用遗传技术来确定章鱼视叶中不同类型的神经元,这是大脑中专门用于视觉的部分。他们挑选出六大类神经元,根据它们发出的化学信号进行区分。观察这些神经元中某些基因的活动,然后发现更多的亚型,为更具体的作用提供了线索。在某些情况下,科学家们精确地指出了特定的神经元群在独特的空间排列中--例如,在视叶周围的一圈神经元都使用一种叫做辛胺的分子发出信号。果蝇在活动时使用这种类似于肾上腺素的分子来增加视觉处理。因此,它也许在章鱼中也有类似的作用。"现在我们知道有这种非常特殊的细胞类型,我们可以开始进入并弄清楚它的作用,数据中大约有三分之一的神经元看起来还没有完全发育。章鱼的大脑在动物的生命周期中不断成长并增加新的神经元。这些不成熟的神经元,尚未整合到大脑电路中,是大脑处于扩张过程中的一个标志!"。然而,该地图并没有像研究人员所想的那样,显示出明显从人类或其他哺乳动物大脑转移过来的神经元组。这些神经元并没有相互映射--它们使用不同的神经递质。但是,也许它们正在进行相同种类的计算,只是方式不同。深入挖掘还需要更好地掌握头足类动物的遗传学。参与这项研究的安德鲁-克恩实验室的研究生加比-科芬(GabbyCoffing)说,由于章鱼在传统上没有被用作实验动物,许多用于果蝇或小鼠的精确遗传操作的工具还不存在于章鱼。有很多基因我们不知道它们的功能是什么,因为我们还没有对很多头足类动物的基因组进行排序。如果没有相关物种的基因数据作为比较点,就很难推断出特定神经元的功能。研究团队正在迎接这一挑战。他们现在正在努力绘制章鱼大脑视叶以外的地图,看看他们在这项研究中关注的一些基因如何在大脑的其他地方出现。他们还在记录视叶中的神经元,以确定它们如何处理视觉场景。随着时间的推移,他们的研究可能会使这些神秘的海洋动物不再那么神秘--同时也为我们自己的进化提供一点启示。...PC版:https://www.cnbeta.com.tw/articles/soft/1331421.htm手机版:https://m.cnbeta.com.tw/view/1331421.htm

封面图片

激活基底前脑中的星形胶质细胞可使小鼠长时间保持清醒

激活基底前脑中的星形胶质细胞可使小鼠长时间保持清醒华盛顿州立大学(WSU)的研究人员一直在研究星形胶质细胞在睡眠和觉醒中的作用,星形胶质细胞是胶质细胞的一种亚型,已知能调节大脑和身体的不同功能。他们最近在《神经科学杂志》(JournalofNeuroscience)上发表的论文显示,激活基底前脑(即支持调节睡眠、觉醒和体温的大脑区域)中的星形胶质细胞会使小鼠无限期地保持清醒,而不会表现出任何嗜睡的迹象。"我们的研究是对使我们困倦的脑细胞和脑回路进行的更广泛调查的一部分,"研究人员之一马科斯-弗兰克(MarcosFrank)告诉《医学快报》(MedicalXpress)。"科学家们将其称为'睡眠驱动力',而我们对睡眠驱动力还没有一个完整的解释。早在2009年,我们就发表了第一份证据,证明一类名为神经胶质星形胶质细胞的非神经元细胞会影响体内的睡眠驱动力。从那时起,我们就一直试图了解星形胶质细胞在睡眠和觉醒中的确切作用"。弗兰克和他的同事们最近工作的主要目的是更好地了解基底前脑中的星形胶质细胞如何影响睡眠、苏醒和整体睡眠驱动力。为此,研究人员使用了一系列先进的遗传和化学技术,以可逆的方式改变小鼠基底前脑中星形胶质细胞的活化。弗兰克解释说:"我们使用了一种'化学遗传'技术来表达哺乳动物大脑中通常不表达的小分子受体。当被一种特殊药物激活时,这种受体会激活星形胶质细胞。我们将这种方法与大脑活动和运动活动的标准测量方法结合起来,这些方法共同告诉我们动物是醒着还是睡着了。"为了确保他们观察到的效果与化疗基因激活星形胶质细胞具体相关,研究小组还进行了几次对照实验,在类似的情况下观察相同的小鼠,但它们的星形胶质细胞没有被激活。最终,研究人员观察到,基底前脑星形胶质细胞被激活后,小鼠连续数小时保持清醒,没有表现出任何典型的嗜睡迹象。弗兰克说:"小鼠似乎是在没有任何'代价'的情况下保持清醒的,换句话说,就是没有增加睡眠动力。这出乎我们的意料,并具有若干重要意义。首先,我们的研究结果对我们的睡眠需求是由清醒本身产生的这一观点提出了质疑。相反,它可能需要亚型脑细胞之间进行一系列特定的相互作用。"这个研究小组最近收集的研究结果凸显了一些神经元-神经胶质细胞回路在调节睡眠驱动力和觉醒方面的关键作用。未来,这些发现可能会为有关睡眠神经基础的激动人心的新发现铺平道路,也有可能使人们能够创造出让人长时间保持清醒和清醒的药物。弗兰克补充说:"想象一下,在这个世界上(如果将其应用到人类身上),轮班工作的人不会犯困,宇航员、飞行员、士兵、医疗保健提供者、急救人员可以长时间不睡觉。虽然我们还处于起步阶段,但如果真的实现了这一目标,将永远改变人类的极限。我们下一步的工作重点是了解当我们激活基底前脑星形胶质细胞时,在一系列事件中接下来会发生什么。这会导致周围神经元发生变化吗?在健康的大脑中,通常是什么控制着这一过程,这种星形胶质细胞激活的觉醒与正常的觉醒是否相同?这些都是我们希望在今后的研究中回答的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1379697.htm手机版:https://m.cnbeta.com.tw/view/1379697.htm

封面图片

研究发现高脂肪饮食会降低大脑对食物消耗的调节能力

研究发现高脂肪饮食会降低大脑对食物消耗的调节能力宾夕法尼亚州立大学医学院的研究人员提出,星形细胞(大脑中的大型星形细胞,调节大脑中神经元的许多不同功能)调节短期卡路里摄入。这些细胞控制着大脑和肠道之间的信号传导途径。持续吃高脂肪/高热量饮食似乎会破坏这种信号通路。了解大脑的作用和导致暴饮暴食的复杂机制,这种行为会导致体重增加和肥胖,可以帮助开发治疗方法。肥胖是一个全球公共卫生问题,因为它与心血管疾病和2型糖尿病的风险增加有关。在英国,63%的成年人被认为超过了健康体重,其中约有一半人患有肥胖症。每三个离开小学的儿童中就有一个超重或肥胖。大鼠脑干在控制饮食条件下(上)和高脂肪饮食喂养3天后(下)的照片显示星形细胞(GFAP;绿色)染色的增加。下面是控制饮食(左)和高脂肪饮食(右)的高倍放大图像。资料来源:CourtneyClyburn等人,10.1113/JP283566美国宾夕法尼亚州立医学院的KirsteenBrowning博士说:"热量摄入似乎在短期内受到星形胶质细胞的调节。我们发现,短暂接触(三到五天)高脂肪/高热量饮食对星形胶质细胞的影响最大,触发了控制胃的正常信号通路。随着时间的推移,星形胶质细胞似乎对高脂肪的食物不敏感了。在吃高脂肪/高热量饮食的10-14天左右,星形胶质细胞似乎没有反应,大脑调节卡路里摄入的能力似乎丧失。这扰乱了对胃的信号传递,推迟了胃的排空方式"。当摄入高脂肪/高热量的食物时,星形细胞最初会做出反应。它们的激活触发了胶质传导物质的释放,这些化学物质(包括谷氨酸和ATP)会兴奋神经细胞,并使正常的信号传导途径刺激控制胃部工作方式的神经元。这确保了胃正确地收缩,以应对食物通过消化系统时的填充和排空。当星形胶质细胞被抑制时,该级联就被破坏了。信号化学品的减少导致了消化的延迟,因为胃不能适当地填充和排空。这项有力的调查利用行为观察来监测大鼠(N=205,133只雄性,72只雌性)的食物摄入量,这些大鼠被喂以对照或高脂肪/卡路里饮食,为期1、3、5或14天。这与药理学和专家遗传学方法(体内和体外)相结合,针对不同的神经回路。使研究人员能够专门抑制脑干(连接大脑和脊髓的大脑后部)特定区域的星形胶质细胞,因此他们可以评估单个神经元的行为方式,以研究大鼠清醒时的行为。人类研究将需要进行,以确认同样的机制是否发生在人类身上。如果是这样的话,将需要进一步的测试,以评估该机制是否可以安全地成为目标,而不破坏其他神经通路。研究人员已计划进一步探索这一机制。克尔斯滕-布朗宁博士说:"我们还没有发现星形胶质细胞活动和信号机制的丧失是暴饮暴食的原因,还是它发生在对暴饮暴食的反应中。我们急切地想知道是否有可能重新激活大脑明显失去的调节卡路里摄入的能力。如果是这样的话,它可能会导致干预措施,以帮助恢复人类的卡路里调节"。...PC版:https://www.cnbeta.com.tw/articles/soft/1350505.htm手机版:https://m.cnbeta.com.tw/view/1350505.htm

封面图片

神经科学研究又有新突破:新图像捕捉到突触的未知细节

神经科学研究又有新突破:新图像捕捉到突触的未知细节透视三维模型,显示轴突(红色)、中等脊髓运动神经元(绿色)和星形胶质细胞汇聚在突触处(黄色)。资料来源:罗切斯特大学和哥本哈根大学神经医学转化中心这项新研究发表在《美国科学院院刊》(PNAS)上,由罗切斯特大学和哥本哈根大学神经医学转化中心联合主任、医学博士SteveGoldman领导的团队撰写。这些发现代表了一项重大的技术成就,使研究人员能够以以前无法达到的详细程度研究汇聚在单个突触的不同细胞。"从文献中了解突触的结构是一回事,但亲眼看到单个细胞之间相互作用的精确几何形状又是另一回事,"转化神经医学中心研究副教授、本研究的共同作者阿卜杜拉蒂夫-本拉伊斯博士说。"测量这些极小环境的能力是一个年轻的领域,有可能促进我们对突触功能受到干扰的一些神经退行性疾病和神经精神疾病的了解"。研究人员利用这项新技术将健康小鼠的大脑与携带导致亨廷顿症的突变基因的小鼠的大脑进行了比较。戈德曼实验室之前的研究表明,功能失调的星形胶质细胞在这种疾病中起着关键作用。星形胶质细胞是大脑中被称为胶质细胞的支持细胞家族的成员,有助于维持突触处适当的化学环境。研究人员重点研究了涉及中刺运动神经元的突触,这些细胞的逐渐丧失是亨廷顿氏病的特征之一。研究人员首先要找出隐藏在三个不同细胞纠结中的突触,这三个细胞分别是:来自远处神经元的突触前轴突;其目标--突触后中棘运动神经元;以及邻近星形胶质细胞的纤维过程。为此,研究人员利用病毒为轴突、运动神经元和星形胶质细胞分别赋予荧光标签。然后,他们取出大脑,通过多光子显微镜对感兴趣的区域进行成像,并使用一种名为红外烙印的技术,利用激光在脑组织中创建参考点,以便研究人员随后重新定位感兴趣的细胞。研究小组随后使用哥本哈根大学的串行块面扫描电子显微镜对脑组织进行了检查。该设备使用钻石刀对脑组织的超薄切片进行连续切除和成像,从而创建出标记细胞及其在突触处相互作用的三维纳米级模型。"这些模型揭示了星形胶质细胞及其伴侣突触之间的几何和结构关系,这一点非常重要,因为这些细胞必须以特定的方式在突触处相互作用,"该研究的第一作者、神经医学转化中心高级助理卡洛斯-贝尼特斯-比利亚努埃瓦(CarlosBenitezVillanueva)博士说。"这种方法使我们有能力测量和描述突触环境的几何形状,并将其作为神经胶质疾病的一种功能来进行测量和描述。"在健康小鼠的大脑中,研究小组观察到,星形胶质细胞过程与圆盘状突触周围的空间接触并将其完全包围,形成了紧密的结合。相比之下,亨廷顿氏症小鼠的星形胶质细胞在投资或封存突触方面并不那么有效,留下了很大的空隙。这种结构缺陷使得钾和谷氨酸--调节细胞间通讯的化学物质从突触中渗漏出来,从而可能破坏正常的细胞间通讯。星形胶质细胞功能障碍与其他疾病有关,包括精神分裂症、肌萎缩侧索硬化症和额颞叶痴呆症。研究人员认为,这项技术可以大大提高我们对这些疾病确切结构基础的认识。他们特别指出,这项技术可用于评估细胞置换策略治疗这些疾病的效果,即用健康的神经胶质细胞置换患病的神经胶质细胞。...PC版:https://www.cnbeta.com.tw/articles/soft/1379357.htm手机版:https://m.cnbeta.com.tw/view/1379357.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人