科学家发现部分类型的癌症背后的全新机制

科学家发现部分类型的癌症背后的全新机制在仔细分析CDK13的功能时,Insco发现该蛋白参与了一个细胞清理系统。它调节一系列其他蛋白质,确保细胞中产生的有缺陷的RNA被及时清除,但突变干扰了这种重要的清理工作。"制造RNA有数百个步骤,有时会出现问题,"Insco说。"它们是通常需要被丢弃的错误。在这种情况下,我们发现细胞没有将它们清理干净。'吸尘器'坏了,所以RNA在堆积。"果然,当Insco测试这些残留的RNA分子对黑色素瘤的影响时,她发现它们极大地加速了癌症的发展。该团队检查了一系列人类癌症的CDK13或其调节的蛋白质的突变,并发现他们检查的黑色素瘤中21%的肿瘤有这样的突变。在肺癌、子宫癌、结肠癌和非黑色素瘤皮肤癌中也发现了类似的突变。识别问题是重要的一步,但这只是第一步。研究人员将开始研究如何针对这一机制来发现新的潜在治疗方法,该团队的下一步是调查促进癌症的原因是由受损的RNA分子本身造成的,还是它们产生了异常的蛋白质。该研究发表在《科学》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1358947.htm手机版:https://m.cnbeta.com.tw/view/1358947.htm

相关推荐

封面图片

科学家给疲惫不堪的T细胞以第二次机会促进癌症治疗

科学家给疲惫不堪的T细胞以第二次机会促进癌症治疗作为白细胞的一种类型,T细胞在保护身体不受外来入侵者(如癌症)侵害方面发挥着重要作用。但它们只能战斗这么长时间,然后就会变得疲惫不堪。当这种情况发生时,T细胞不会产生那么多的免疫反应刺激蛋白,而且在杀死癌症肿瘤细胞方面也不那么有效。免疫疗法是一系列基于生物学的癌症治疗方法的总称,它通过提高免疫系统的能力来阻止或减缓癌细胞的生长,或帮助其识别和摧毁癌细胞,从而利用T细胞来对抗癌症。要使免疫疗法有效,需要T细胞处于高峰期--未被耗尽--的状态。加州SanfordBurnhamPrebys的研究人员研究了黑色素瘤情况下的T细胞衰竭,并发现一种名为P-选择素糖蛋白配体-1(PSGL-1)的蛋白质,在T细胞表面发现,是T细胞衰竭的关键。该研究的主要作者JenniferHope说:"减缓或逆转T细胞衰竭是癌症研究的一个巨大焦点,许多研究人员正在研究不同的方法来实现这一目标。这种新方法本身可能是一种可行的治疗方法,但它也有巨大的潜力与现有疗法协同工作"。这种方法是独特的,因为它从多个角度解决了T细胞衰竭的问题。在研究了具有PSGL-1遗传缺陷的小鼠后,研究人员发现,这种蛋白质会导致T细胞衰竭,并且在患有免疫疗法抗性黑色素瘤的小鼠中,通过阻断PSGL-1活性的抗体减缓了T细胞衰竭。他们还注意到,耗尽的T细胞重新获得了它们的功能。Hope说:"与现有的免疫疗法相比,这种方法的独特之处在于它直接改变了T细胞衰竭的方式,并帮助它们重新获得功能。"在看到他们的基于抗体的方法在患有黑色素瘤的小鼠身上取得成功后,研究人员在患有间皮瘤的小鼠身上进行了测试,间皮瘤是一种侵袭性和致命的癌症,通常影响肺部组织并与石棉接触有关。他们发现,他们的方法对这种类型的癌症也有效果。研究人员的下一步是调整他们的方法,使之适合用于人类,并有可能用于治疗广泛的治疗性癌症。该研究的通讯作者琳达-布拉德利说:"一旦我们完成了所有必要的科学工作,这对很多患有对当前治疗有抵抗力的癌症的人来说可能真的很有价值,甚至是拯救生命。我们仍然有很长的路要走,但我很乐观,我们在这里找到了改变游戏规则的东西。"该研究发表在《细胞报告》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1358293.htm手机版:https://m.cnbeta.com.tw/view/1358293.htm

封面图片

科学家揭示蛋白质如何驱动癌症生长

科学家揭示蛋白质如何驱动癌症生长在圣路易斯华盛顿大学医学院、麻省理工学院和哈佛大学布罗德研究所、杨百翰大学以及世界各地其他机构的领导下,临床蛋白质组肿瘤分析联合会对驱动癌症的关键蛋白质及其调控方式进行了研究。研究结果于8月14日发表在《细胞》(Cell)和《癌细胞》(CancerCell)杂志上的一组论文中。临床肿瘤蛋白质组学分析联合会由美国国立卫生研究院(NIH)国家癌症研究所资助。资深作者、华盛顿大学戴维-英格利希-史密斯医学特聘教授丁力博士说:"在我们开发更好的癌症疗法的努力中,这种对驱动肿瘤生长的蛋白质的新分析是继癌症基因组测序之后的下一步。通过过去的癌细胞基因组测序工作,我们确定了近300个驱动癌症的基因。现在,我们正在研究这些癌基因所启动的机器的细节--实际导致细胞分裂失控的蛋白质及其调控网络。我们希望这项分析能成为癌症研究人员开发多种肿瘤类型新疗法的重要资源。"研究人员分析了涉及10种不同类型癌症的约1万个蛋白质,他们强调了大量数据在这类分析中的重要性;其中许多重要的癌症驱动蛋白在任何一种癌症中都很罕见,如果对肿瘤类型进行单独研究,就不可能发现这些蛋白。这项分析包括两种不同类型的肺癌以及结直肠癌、卵巢癌、肾癌、头颈癌、子宫癌、胰腺癌、乳腺癌和脑癌。丁力也是巴恩斯犹太医院和华盛顿大学医学院西特曼癌症中心的研究成员。他介绍谁哦"当我们对多种癌症类型进行综合分析时,我们就能提高检测导致癌症生长和扩散的重要蛋白质的能力。综合分析还能让我们找出驱动不同类型癌症的主要共同机制。"除了单个蛋白质的功能外,这些数据还能让研究人员了解蛋白质之间是如何相互作用来促进癌症生长的。如果两种蛋白质的水平相互关联--例如,当其中一种蛋白质的水平较高时,另一种蛋白质的水平也总是较高--这就表明这两种蛋白质是作为伙伴作用的。破坏这种相互作用可能是阻止肿瘤生长的一种有效方法。这些研究(包括丁和布罗德研究所的加德-格茨博士共同领导的一项研究)还揭示了通过化学改变蛋白质以改变其功能的不同方法。研究人员记录了这种化学变化--称为乙酰化和磷酸化的过程--如何改变DNA修复、改变免疫反应、改变DNA的折叠和包装方式,以及其他可能在癌症发生过程中发挥作用的重要分子变化。这项研究还揭示了免疫疗法的有效性。检查点抑制剂等免疫疗法通常对突变较多的癌症最有效,但即便如此,它们也并非对所有患者都有效。研究人员发现,大量突变并不总是导致异常蛋白质的大量存在,而异常蛋白质正是免疫系统攻击肿瘤的目标。丁说:"对某些癌症来说,即使突变有可能产生肿瘤抗原,但如果没有异常蛋白表达或表达很少,这种突变就可能不是治疗的靶点。这可以解释为什么有些病人对免疫疗法没有反应,即使他们似乎应该对免疫疗法有反应。因此,我们的蛋白质组学调查涵盖了肿瘤抗原的表达谱,对于设计针对选定突变的新免疫疗法特别有用。"在另一项研究中,丁的团队确定了DNA甲基化模式,这是另一种能影响基因表达方式的化学变化。这种模式可能是癌症的关键驱动因素。在一项重要发现中,研究小组确定了在某些肿瘤类型中抑制免疫系统的分子开关。这组四项研究的最后一篇论文向更广泛的研究界提供了联盟使用的数据和分析资源。她说:"总的来说,这种对多种癌症类型进行的彻底蛋白质组学和化学修饰分析--与我们长期积累的癌症基因组学知识相结合--提供了另一层信息,我们希望这些信息能帮助解答癌症是如何生长并设法躲避我们的许多最佳治疗方法的许多持续存在的问题。"...PC版:https://www.cnbeta.com.tw/articles/soft/1377313.htm手机版:https://m.cnbeta.com.tw/view/1377313.htm

封面图片

科学家利用CRISPR工具识别导致肝癌的基因突变

科学家利用CRISPR工具识别导致肝癌的基因突变CSHL的科学家们在小鼠身上创造了两种肝脏肿瘤亚型,上面的图像。左边的图像显示了一种肝脏肿瘤亚型,它与人类肝癌的最常见形式--肝细胞癌有关。右边是一种与较罕见的肝癌有关的肿瘤亚型,主要发现于儿童,名为肝母细胞瘤。基因包含产生蛋白质所需的信息。拼接是一个过程,从基因编码的信息中复制的RNA信息在被用作制造特定蛋白质的蓝图之前被编辑。源自单一基因、功能高度相似但氨基酸序列不同的蛋白质被称为异构体。异构体的产生是身体对一个基因或蛋白质的特性进行模仿的方式。不同的异构体可以导致不同类型的癌症肿瘤的形成。这些肿瘤亚型很难在实验室中产生,因此难以研究。为了更好地了解异构体如何导致不同类型肝癌的产生,一项新的研究使用基因编辑工具CRISPR/Cas9来研究不同的异构体如何导致不同肿瘤亚型的发展。该研究的通讯作者SemirBeyaz说:"每个人都认为癌症只是一种类型。但是有了不同的异构体,你最终会出现具有不同特征的癌症亚型。"研究人员使用CRISPR/Cas9锁定了小鼠基因CTNNB1的一个部分。CTNNB1基因提供了制造一种叫做β-catenin的蛋白质的指令,这种蛋白质参与调节和协调细胞间的粘附,并参与基因转录。以前的研究已经确定β-catenin是一种有效的致癌基因,这种基因可以将健康细胞转化为肿瘤细胞。CTNNB1基因的突变与广泛的癌症有关,包括肝癌和结肠癌。CTNNB1基因第3外显子的突变--外显子是编码蛋白质的DNA或RNA的一个部分--是参与肿瘤形成的基因转录的关键。在目前的研究中,研究人员希望确定β-catenin突变如何推动肝癌肿瘤亚型的发展,即肝细胞癌(HCC)和肝母细胞瘤(HB)。HCC是成人肝癌中最常见的类型,约占所有肝癌的90%,而HB是一种罕见的肝癌形式,常见于儿童。通常,CRISPR/Cas9技术被用来通过移除DNA序列的部分来抑制基因功能(功能丧失)。但在这里,研究人员首次将其用于功能增益研究,在小鼠中创造不同的致癌突变。以这种方式使用CRISPR/Cas9刺激了蛋白质的活性,因此也刺激了肿瘤的生长。通过对肿瘤亚型、HCC和HB进行基因测序,研究人员发现,CRISPR/Cas9诱导的β-catenin异构体推动了肝脏肿瘤亚型。Beyaz说:"我们能够确定那些与不同癌症亚型相关的异构体。对我们来说,这是一个令人惊讶的发现"。为了证实这些异构体导致了突变,研究人员测试了他们是否能够在不使用CRISPR的情况下在小鼠中产生肝癌亚型。他们发现确实可以。该研究强调了在功能增益研究中使用CRISPR/Cas9的潜力,并创造了一种模拟某些肝脏肿瘤亚型的新方法。它还进一步证明了外显子3在肿瘤发展中的作用以及靶向外显子跳过的好处。外显子跳过是一种疗法,它使用突变特异性反义寡核苷酸(AON)--一种实验室制造的可以与特定RNA分子结合的DNA或RNA位点--来诱导RNA剪接,使细胞"跳过"有问题的或错位的外显子。研究人员希望他们的发现可能会指导未来对癌症的新治疗干预措施的研究。Beyaz说:"最终,我们想做的是找到研究癌症生物学的最佳模型,以便我们能够找到治疗方法。"该研究发表在《病理学杂志》上。...PC版:https://www.cnbeta.com.tw/articles/soft/1354177.htm手机版:https://m.cnbeta.com.tw/view/1354177.htm

封面图片

科学家揭开关键癌症蛋白质的秘密结构

科学家揭开关键癌症蛋白质的秘密结构俄亥俄州立大学的科学家们利用先进的研究技术检测了一种因危险突变而与人类癌症关系密切的蛋白质的隐藏区域,从而为该蛋白质的研究注入了新的活力。这项研究确定了受有害基因改变影响的区域。Ras蛋白家族是启动多种细胞生长、分裂和分化的酶,其基因已被确定为人类最常发生突变的癌症相关基因。这项研究的对象K-Ras蛋白与75%的Ras相关癌症有关。研究人员首次发现了这种蛋白质结构的一部分,而这部分结构以前是标准实验室工具无法观察到的,研究人员揭示了与这种蛋白质突变有关的特征和相互作用,这种突变使细胞处于永久分裂状态--这是一种典型的癌症特征。研究的资深作者、俄亥俄研究学者、俄亥俄州立大学化学与生物化学教授拉斐尔-布吕施韦勒(RafaelBrüschweiler)说:"我们知道这些突变是一个重大问题:它们会导致死亡。我们知道,结构生物学能为了解这些突变的机制提供独特的见解,并能促进寻找潜在的治疗方法。""我们现在对这种蛋白质的作用有了更全面的了解,这意味着我们可以开始考虑如何在它变异后中和它。从这个意义上说,信息就是力量,现在这些信息已经公开,我们和其他研究人员可以利用这些信息开始假设。"这项研究最近发表在《自然-结构与分子生物学》(NatureStructural&MolecularBiology)杂志上。研究方法和结果尽管已有关于K-Ras及其与细胞健康相关分子的关键功能关系的知识,但这种蛋白质一直被认为是"不可药用的",因为它的构型-无论是正常形式还是突变形式都隐藏了其结构中最有希望成为治疗靶点的位点。设计这类药物时需要精确,因为以错误的方式干扰蛋白质可能比突变导致的疾病造成更大的伤害。"K-Ras是癌症研究的圣杯--可能是全世界研究最多的生物分子之一,因为它在许多癌症中发挥着关键作用,"Brüschweiler说。"但这也是一个巨大的挑战。"2019年,Brüschweiler及其同事报告了一种技术,这种技术能够观察到移动速度太慢、标准核磁共振(NMR)光谱无法检测到的蛋白质。一年后,研究小组决定开始将这些发现应用于寻找K-Ras的秘密藏身之处。标准核磁共振可以跟踪快速作用的蛋白质,但在较长的运动和相互作用时间尺度上会遇到困难,而用于确定蛋白质结构的X射线晶体学在运动较少和时间较长的情况下效果更好。Brüschweiler及其同事考虑到了K-Ras的动态特性及其与活性配体(GTP)的相互作用,首先检测到了来自隐藏区域的微弱信号,然后优化核磁共振实验以加强这些信号。这项研究揭示了K-Ras结构中的两个"开关"区域--有趣的是,这两个区域都位于发生最危险突变的蛋白质环附近,这在以前是不可见的。研究小组还确定了蛋白质"骨架"的复杂结构动力学行为,它放大了开关附近的其他特征。Brüschweiler说,骨架对了解蛋白质的结构特性至关重要--从骨架出发,鉴定氨基酸侧链"相对简单"。这些实验还进一步明确了正常蛋白质与其变异形式的区别:在正常情况下,K-Ras与两个伙伴分子中的第一个分子结合时活性更高,并能保持对多种细胞功能的适当控制,包括恢复到非活性状态。如果发生突变,K-Ras就会停留在活跃期,永远不会休息。"我们需要活跃的细胞,但在某些时候,它们必须停下来。否则,就像在汽车上永远不要把脚从油门上移开--在某些时候,你需要把脚从油门上移开,因为车速太快了,"他说。"这就是基本问题所在,这些突变会诱导细胞不停地活动。"有了突变相关开关区域的特征,研究人员就有了新的药物靶点,可以在不妨碍K-Ras基本细胞功能的情况下抑制突变。Brüschweiler说:"开关和开关相互作用的相关区域是新的候选目标,我们现在可以对它们进行前所未有的详细监测。这可能不会在一夜之间改变世界,但这是有可能影响人类健康的基本新知识。"Brüschweiler对下一步工作有自己的想法,比如描述现有药物如何与蛋白质相互作用。他的团队和其他人未来的工作将得到一台磁场为1.2千兆赫的新型NMR仪器的支持,这将是美国最强大的NMR仪器,该仪器刚刚运抵俄亥俄州立大学,Brüschweiler是俄亥俄州立大学国家网关超高场NMR中心的首席研究员。该中心于2019年获得了美国国家科学基金会1760万美元的资助,该基金会也为这项新研究提供了支持。...PC版:https://www.cnbeta.com.tw/articles/soft/1395097.htm手机版:https://m.cnbeta.com.tw/view/1395097.htm

封面图片

新技术能筛选并确定阻止黑色素瘤扩散的药物

新技术能筛选并确定阻止黑色素瘤扩散的药物ShwetaTikoo博士和DajiangGuo博士转移性癌症,尤其是黑色素瘤仍然是一项人类所面临的健康挑战,因为每个肿瘤都可能有独特的微环境,对治疗的反应也不尽相同。黑色素瘤是一种侵袭性特别强的癌症,一旦扩散,存活率很低。转移过程的一个特征是肿瘤细胞形成内生癌细胞,这种特化突起的功能是降解细胞外基质,使细胞能够进入或侵入新的环境。找到针对内生突起的药物对于有效防止癌症扩散至关重要,但目前还缺乏筛选这些药物的能力。随着"Invasion-Block"的开发,这一切都可能发生改变。Invasion-Block"是一个自动化、高含量的筛选平台,它使澳大利亚百年纪念研究所的研究人员能够评估各种药物和化合物通过靶向内生癌细胞来防止黑色素瘤扩散的效果。""黑色素瘤是一个难缠的对手,通常会迅速扩散,难以治疗,"该研究的通讯作者ShwetaTikoo说。"找到更好治疗方法的关键在于药物发现,而这正是'Invasion-Block'工具发挥关键作用的地方"。研究人员将Invasion-Block与从天文科学中改编而来的自动图像分析管道-Smoothen-MaskandReveal(S-MARVEL)结合在一起,用于去除伪影并大幅提高内生嵴显微图像数据集的质量。然后,他们筛选了美国食品药物管理局批准的两个化合物库中的3840种药物,以检测它们抑制黑色素瘤细胞内陷窝形成的能力,结果发现最有效的化合物是激酶抑制剂。激酶抑制剂可阻断蛋白激酶的作用,蛋白激酶会在蛋白质上添加磷酸基团,这一过程被称为磷酸化。磷酸化可以打开或关闭蛋白质,影响其活性和功能水平,通常是某些癌症生长的必要步骤。研究报告的第一作者郭大江说:"这表明,这些酶可能是找到有助于遏制黑色素瘤扩散的治疗方法的关键。"在已确定的激酶抑制剂中,研究人员选择在实验室测试共济失调-特朗根氏症突变(ATM)抑制剂的有效性。他们利用CRISPR基因编辑技术敲除了黑色素瘤细胞中负责表达ATM激酶的基因,发现细胞的侵袭性降低了,也没有像以前那样扩散到小鼠的淋巴结。Tikoo说:"我们相信,ATM可能成为治疗患者黑色素瘤扩散的有效治疗靶点。'Invasion-Block'和'S-MARVEL'的结合为寻找能阻止癌症扩散的药物开辟了新途径。"研究人员说,这项研究在抗击黑色素瘤的斗争中迈出了重要一步,为今后的研究和开发新型疗法奠定了基础。这项研究发表在《美国国家科学院院刊》(PNAS)上。...PC版:https://www.cnbeta.com.tw/articles/soft/1398989.htm手机版:https://m.cnbeta.com.tw/view/1398989.htm

封面图片

以色列研究:揭示皮肤癌的脑转移机制

以色列研究:揭示皮肤癌的脑转移机制(早报讯)以色列等国研究人员发现了黑色素瘤这种皮肤癌转移到大脑的机制,并找到了抑制癌转移的方法。新华社报道,据介绍,约90%的黑色素瘤患者会在晚期发生脑转移。但大脑是一个受较好保护的器官,血脑屏障通常可以阻止有害物质进入大脑。因此医学界一直在探索皮肤癌的脑转移原因。以色列特拉维夫大学等机构的研究人员使用来自皮肤、血液和脑的组织,以及相关癌细胞,在实验室中模拟了它们在人体内的相互作用。结果发现,黑色素瘤这种皮肤癌细胞进入血液后,会释放出名为CCR2和CCR4的蛋白质,而大脑中的星形胶质细胞会分泌一种名为MCP-1的蛋白质。它们之间的相互作用会导致癌细胞进入大脑。研究人员发现用两种方法可以抑制癌细胞的脑转移:一是利用抗体和小分子药物阻断蛋白质MCP-1发挥作用,二是用基因编辑技术敲除癌细胞中与蛋白质CCR2和CCR4相关的基因。实验室研究显示,这两种方法均可抑制癌细胞的脑转移,根据干预阶段的不同,可将肿瘤生长抑制60%至80%。上述抑制皮肤癌的脑转移方法尚未经过临床试验。但是,研究人员说,其中使用的抗体和小分子药物,已经在治疗其他疾病的临床试验中通过了安全性测试,因此有望在此基础上较快开发出可临床应用的疗法。这份研究论文日前在美国《临床检查杂志·观察》上发表。发布:2022年9月26日4:17PM

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人