太阳能新技术利用粪便制造氢燃料 转化率高达35%

太阳能新技术利用粪便制造氢燃料转化率高达35%氢基燃料是最有前途的清洁能源之一。但生产纯氢气是一个能源密集型过程,通常需要煤或天然气以及大量电力。在《细胞报告物理科学》(CellReportsPhysicalScience)杂志的一篇论文中,由UIC工程师MeeneshSingh领导的一个多机构团队揭示了绿色制氢的新工艺。这种方法利用一种名为生物炭的富碳物质来减少将水转化为氢气所需的电量。通过使用太阳能或风能等可再生能源,并将副产品用于其他用途,该工艺可将温室气体排放量降至净零。化学工程系副教授辛格说:"我们是第一个证明可以利用生物物质在几分之一伏特的条件下生产氢气的小组。这是一项变革性技术。"用于制造清洁氢气的生物炭。资料来源:ennyFontaine/UIC电解是将水分离成氢和氧的过程,需要电流。在工业规模上,通常需要化石燃料来产生这种电力。最近,科学家们通过在反应中引入碳源,降低了水分裂所需的电压。但这一过程也要使用煤或昂贵的化学品,并释放出二氧化碳作为副产品。辛格及其同事对这一工艺进行了改进,改用普通废品中的生物质。通过将硫酸与农业废弃物、动物粪便或污水混合,他们制造出一种名为生物炭的泥浆状物质,这种物质富含碳。研究小组试验了由甘蔗皮、大麻废料、废纸和牛粪制成的不同种类的生物炭。加入电解室后,所有五种生物炭都降低了将水转化为氢气所需的功率。其中表现最好的是牛粪,可将所需电力降低六倍,约为五分之一伏特。伊利诺伊大学芝加哥分校副教授MeeneshSingh(右)和博士后研究员RohitChauhan在Singh的实验室工作。图片来源:JennyFontaine/UIC由于对能量的要求很低,研究人员可以用一个标准硅太阳能电池在0.5伏电压下产生大约15毫安的电流为反应提供能量。这还不及一节AA电池产生的电量。辛格实验室的合著者和博士后学者罗希特-乔汉(RohitChauhan)说:"它的效率非常高,生物炭和太阳能几乎有35%转化为氢气。这些数字创下了世界纪录;这是任何人展示过的最高数字。"要使这一过程实现净零排放,就必须捕获反应产生的二氧化碳。但辛格说,这也会带来环境和经济效益,比如生产纯二氧化碳来碳酸饮料,或将其转化为乙烯和塑料制造中使用的其他化学品。"它不仅实现了生物废料利用的多样化,还能清洁生产氢气以外的不同化学物质,"论文共同第一作者、美国加州大学伯克利分校(UIC)毕业生尼希坦-卡尼(NishithanKani)说。"这种廉价的制氢方式可以让农民自给自足地满足他们的能源需求,或者创造新的收入来源"。编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1433564.htm手机版:https://m.cnbeta.com.tw/view/1433564.htm

相关推荐

封面图片

破纪录的太阳能制氢装置:20.8%转化率高效将阳光转化为清洁能源

破纪录的太阳能制氢装置:20.8%转化率高效将阳光转化为清洁能源革命性的光反应器设计阿迪提亚-莫希特(AdityaMohite)的实验室专门从事化学和生物分子工程研究,是建造这种集成光反应器的领头人。该装置设计中的一个关键因素是防腐蚀屏障,它能有效地将半导体与水隔绝,同时又不妨碍电子转移。据发表在《自然-通讯》(NatureCommunications)上的研究报告称,该装置的太阳能-氢气转换效率高达20.8%,令人印象深刻。莱斯大学莫希特研究小组及其合作者开发的光反应器实现了20.8%的太阳能-氢气转换效率。资料来源:GustavoRaskosky/莱斯大学奥斯汀-费尔(AustinFehr)是一名化学与生物分子工程博士生,也是这项研究的主要作者之一,他强调了这项工作的重要性:"利用阳光作为能源生产化学品是实现清洁能源经济的最大障碍之一。我们的目标是建立经济上可行的平台,生成太阳能衍生燃料。在这里,我们设计了一种能吸收光线并在其表面完成电化学分水化学反应的系统。"这种装置被称为光电化学电池,因为光的吸收、转化为电能以及利用电能为化学反应提供动力都发生在同一个装置中。迄今为止,利用光电化学技术生产绿色氢气一直受到效率低和半导体成本高的阻碍。样本视频中的四张系列静态图片,展示了莱斯大学的光反应器如何在模拟阳光的刺激下分裂水分子并产生氢气。资料来源:莫希特实验室/莱斯大学费尔解释了他们发明的与众不同之处:"所有这种类型的设备都只利用阳光和水产生绿色氢气,但我们的设备很特别,因为它的效率破了纪录,而且使用的半导体非常便宜。"莫希特实验室及其合作者通过将他们极具竞争力的太阳能电池转化为反应器,利用收集到的能量将水分离成氧气和氢气,从而创造出了这一装置。他们必须克服的挑战是,卤化物过氧化物晶石在水中极不稳定,用于绝缘半导体的涂层最终不是破坏了它们的功能,就是损坏了它们。AyushAgrawal(左起)、FaizMandani和AustinFehr图片来源:GustavoRaskosky/莱斯大学"在过去的两年里,我们反反复复尝试了不同的材料和技术,"这项研究的合著者、莱斯大学化学工程师迈克尔-王(MichaelWong)说。在漫长的试验未能取得预期效果后,研究人员终于找到了一个成功的解决方案。Fehr说:"我们的主要见解是,你需要两层屏障,一层用来阻挡水,一层用来在过氧化物层和保护层之间实现良好的电接触。我们的成果是无太阳能浓缩的光电化学电池中效率最高的,也使用卤化物包晶石半导体的光电化学电池中整体效率最高的。"对于一个历来由昂贵得令人望而却步的半导体所主导的领域来说,这是一个创举,它可能代表了有史以来第一次实现这类设备商业可行性的途径。研究人员介绍说,他们的阻挡层设计适用于不同的反应和不同的半导体,因此适用于许多系统。莫希特小组介绍说:"我们希望这样的系统能成为一个平台,利用丰富的原料,只需阳光作为能量输入,就能驱动各种电子进行燃料形成反应。"Fehr补充说:"随着稳定性和规模的进一步提高,这项技术可以开启氢经济,改变人类从化石燃料到太阳能燃料的制造方式。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372527.htm手机版:https://m.cnbeta.com.tw/view/1372527.htm

封面图片

23.64%转化率 - 科学家刷新了CIGS太阳能电池的世界纪录

23.64%转化率-科学家刷新了CIGS太阳能电池的世界纪录乌普萨拉大学在利用铜铟镓硒太阳能电池产生电能方面创造了新的世界纪录,效率高达23.64%。这一成就已由一家独立机构进行了验证,研究结果已发表在备受推崇的《自然-能源》杂志上。这一纪录是FirstSolar公司欧洲技术中心(前身为Evolar)与乌普萨拉大学太阳能电池研究人员合作的成果。"我们对这种太阳能电池和最近生产的其他太阳能电池的测量结果都在独立测量的误差范围之内。"这项研究的负责人、乌普萨拉大学太阳能电池技术教授玛丽卡-埃多夫(MarikaEdoff)说:"这项测量还将用于我们自己测量方法的内部校准。"乌普萨拉大学材料科学与工程系教授兼太阳能电池技术部主任MarikaEdoff。资料来源:MikaelWallerstedt此前的世界纪录是23.35%(日本SolarFrontier公司),更早一些是22.9%(德国ZSW公司)。乌普萨拉大学曾保持过这一纪录,第一次是在20世纪90年代的Euro-CIS研究合作项目中。"我们还一度保持着串联原型的记录。"Edoff说:"尽管我们保持电池记录已经有很长一段时间了,但我们往往只是落后于最佳结果,当然,还有许多相关方面需要考虑,例如扩展到大规模工艺的潜力,在这方面我们一直走在前列。"太阳能电池技术在全球范围内迅速发展,根据国际能源机构(IEA)的数据,到2022年,太阳能发电占全球电力的比例将略高于6%。晶体硅是太阳能电池最广泛使用的材料,目前最好的晶体硅太阳能电池组件可将22%以上的太阳光转化为电能,而且现代太阳能电池成本低、长期稳定。太阳能电池研究的一个目标是以合理的生产成本实现30%以上的效率。人们通常关注效率更高的串联太阳能电池,但迄今为止,这种电池的成本太高,无法大规模使用。23.64%的世界纪录是由德国弗劳恩霍夫ISE独立研究所测得的。这篇学术论文对太阳能电池进行了全面的材料和电气分析,并将其与其他研究机构之前的同类太阳能电池记录进行了比较。图片显示的是薄膜太阳能电池活性层的横截面,总厚度不超过3微米。利用隆德MAXIV设施测量的纳米XRF,可以高精度地测量太阳能电池中基体元素和微量元素(本例中为铷)的浓度。资料来源:MarikaEdoff太阳能电池最重要的特性是能够吸收光线并将能量传输到电力负载。要做到这一点,材料必须能够吸收最佳部分的阳光,同时避免在太阳能电池内将能量转化为热量而造成浪费。CIGS太阳能电池由一块普通窗玻璃制成的玻璃片组成,玻璃片上镀有几层不同的涂层,每一层都有特定的功能。吸收阳光的材料由铜、铟、镓和硒(因此缩写为CIGS)组成,并添加了银和钠。这层材料被放置在太阳能电池中,位于金属钼背触点和透明前触点之间。为了使太阳能电池尽可能高效地分离电子,CIGS层经过氟化铷处理。钠和铷这两种碱金属之间的平衡以及铜铟镓硒层的成分是影响转换效率的关键,即太阳能电池将整个太阳光谱转换为电能的比例。测量机构在进行测试时,会使用在强度和光谱上都与太阳相似的过滤光来测量太阳能电池的效率。在测量过程中,太阳能电池保持在受控温度下,独立机构定期相互发送校准太阳能电池。要登记为世界纪录,必须进行独立测量,在这种情况下,测量由弗劳恩霍夫ISE测量机构进行。"我们的研究表明,CIGS薄膜技术是一种具有竞争力的独立太阳能电池替代技术。该技术还具有可用于其他场合的特性,例如串联太阳能电池的底部电池,"Edoff说。为了进一步了解效率与太阳能电池结构之间的相关性,我们采用了几种先进的测量方法:在隆德的MAXIV设备上通过纳米XRF(X射线荧光光谱)对太阳能电池的材料进行了表征,并在此基础上进行了细致的成分分析。高分辨率的透射电子显微镜(TEM)用于研究太阳能电池的横截面,包括成分与深度的函数关系、晶粒如何形成以及各层之间的界面。通过光致发光,研究了太阳能电池在激光激发后发出的光的光谱,以此了解太阳能电池对内部电子的处理情况。与发光微弱的太阳能电池相比,发光明亮的太阳能电池内部热量损失较少。最后,还利用电学测量方法分析了铜铟镓硒材料的掺杂情况。"我们现在保持着世界纪录,这对乌普萨拉大学和FirstSolar欧洲技术中心来说都意义重大。对于以高可靠性著称的铜铟镓硒技术来说,创下世界纪录也意味着它可以为串联太阳能电池等新应用提供可行的替代方案。这对我们在世界各地的研究同事来说非常重要。我们希望对材料和电气性能的分析将为进一步提高性能奠定基础,"Edoff总结道。编译自:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1425973.htm手机版:https://m.cnbeta.com.tw/view/1425973.htm

封面图片

麻省理工学院的列车式新设计可利用40%的太阳热能生产清洁氢燃料

麻省理工学院的列车式新设计可利用40%的太阳热能生产清洁氢燃料在最近发表在《太阳能杂志》上的一项研究中,工程师们阐述了一个可以高效生产"太阳能热化学氢"的系统的概念设计。该系统利用太阳的热量直接分裂水并产生氢气,这是一种清洁燃料,可为长途卡车、轮船和飞机提供动力,同时在此过程中不会排放任何温室气体。如今,氢主要是通过涉及天然气和其他化石燃料的工艺生产出来的,从生产开始到最终使用的整个过程来看,这种原本绿色的燃料更像是一种"灰色"能源。相比之下,太阳能热化学制氢(STCH)提供了一种完全无排放的替代能源,因为它完全依靠可再生的太阳能来驱动制氢。但迄今为止,现有的STCH设计效率有限:只有大约7%的太阳光被用来制氢,其结果是产量低、成本高。麻省理工学院的工程师们设计出了一种能有效利用太阳热能分水制氢的系统。图片来源:AhmedGhoniem、AniketPatankar等人提供麻省理工学院的研究小组估计,他们的新设计可以利用多达40%的太阳热能生成更多的氢气,这是向实现太阳能燃料迈出的一大步。效率的提高可以降低系统的总体成本,使STCH成为一种潜在的、可扩展的、经济实惠的选择,帮助交通行业实现去碳化。这项研究的第一作者、麻省理工学院机械工程罗纳德-C-克兰(RonaldC.Crane)教授艾哈迈德-高尼姆(AhmedGhoniem)说:"我们认为氢是未来的燃料,因此需要廉价、大规模地生成氢。我们正在努力实现能源部的目标,即到2030年以每公斤1美元的价格制造出绿色氢气。为了提高经济效益,我们必须提高效率,确保我们收集的大部分太阳能都用于制氢。"Ghoniem的研究合著者包括:第一作者、麻省理工学院博士后AniketPatankar;麻省理工学院材料科学与工程教授HarryTuller;滑铁卢大学的Xiao-YuWu;以及韩国梨花女子大学的WonjaeChoi。太阳能站与其他拟议的设计类似,麻省理工学院的系统将与现有的太阳能热源配对,例如聚光太阳能发电站(CSP)--一个由数百面镜子组成的圆形阵列,收集阳光并反射到中央接收塔。然后,STCH系统会吸收接收器的热量,并将其用于分裂水和产生氢气。这一过程与电解法截然不同,后者利用电能而不是热能来分裂水。概念STCH系统的核心是一个两步热化学反应。第一步,水以蒸汽的形式接触金属。这使得金属从蒸汽中吸收氧气,留下氢气。这种金属"氧化"类似于铁在水中生锈,但速度更快。一旦氢被分离出来,氧化(或生锈)的金属就会在真空中重新加热,从而逆转生锈过程并使金属再生。除去氧气后,金属可以冷却并再次暴露在蒸汽中以产生更多的氢。这个过程可以重复数百次。MIT研究人员设计的系统旨在优化这一过程。整个系统就像一列在环形轨道上运行的箱形反应器。在实践中,这条轨道将环绕一个太阳能热源(如CSP塔)设置。列车上的每个反应器都将容纳进行氧化还原或可逆生锈过程的金属。每个反应器将首先经过一个热站,在那里暴露在高达1500摄氏度的太阳热量下。这种极端高温会有效地从反应堆的金属中抽出氧气。这样,金属就会处于"还原"状态--随时准备从蒸汽中获取氧气。为此,反应堆将转移到温度约为1000摄氏度的冷却站,在那里接触蒸汽以产生氢气。铁锈和铁轨其他类似的STCH概念都遇到了一个共同的障碍:如何处理反应堆冷却时释放出的热量。如果不对这些热量进行回收和再利用,系统的效率就会很低,无法实用。第二个挑战是如何创造一个高能效的真空环境,使金属能够除锈。一些原型利用机械泵产生真空,但对于大规模氢气生产来说,这种泵能耗太高,成本太高。为了应对这些挑战,麻省理工学院的设计采用了几种节能变通方法。为了回收从系统中逸出的大部分热量,圆形轨道两侧的反应器可以通过热辐射交换热量;热的反应器被冷却,冷的反应器被加热。这样就能将热量保持在系统内。研究人员还增加了第二组反应堆,它们将围绕第一列反应堆以相反的方向移动。这列外反应器的运行温度通常较低,用于从较热的内反应器中排出氧气,而无需使用耗能的机械泵。这些外层反应堆将装载第二种也很容易氧化的金属。当它们环绕一圈时,外层反应堆将吸收内层反应堆中的氧气,有效地去除原有金属的锈迹,而无需使用耗能的真空泵。两组反应堆将连续运行,分别产生纯氢和纯氧。研究人员对这一概念设计进行了详细模拟,发现它将显著提高太阳能热化学制氢的效率,从以前设计所证明的7%提高到40%。Ghoniem说:"我们必须考虑到系统中的每一点能量,以及如何使用这些能量,从而最大限度地降低成本。有了这个设计,我们发现一切都可以用来自太阳的热量来驱动。它能够利用40%的太阳热能生产氢气。"明年,该团队将建造一个系统原型,计划在能源部实验室的聚光太阳能设施中进行测试。Patankar解释说:"该系统完全投入使用后,将被安置在太阳能发电场中间的一座小楼里。建筑物内可以有一列或多列火车,每列火车上有大约50个反应堆。我们认为这可以是一个模块化系统,你以在传送带上增加反应器,从而扩大氢气生产规模。"...PC版:https://www.cnbeta.com.tw/articles/soft/1393517.htm手机版:https://m.cnbeta.com.tw/view/1393517.htm

封面图片

新型催化剂可将二氧化碳高效转化为甲烷 转化率高达99.3%

新型催化剂可将二氧化碳高效转化为甲烷转化率高达99.3%DGIST的一个研究小组开发出一种先进的光催化剂,它能有效地将二氧化碳转化为甲烷,有可能为应对全球变暖提供一种可持续的解决方案。来自DGIST能源科学与工程系的InSoo-il教授及其团队成功开发出一种高效光催化剂。这项创新能够将导致气候变化的重要因素二氧化碳(CO2)转化为甲烷(CH4),也就是通常所说的天然气。全球变暖导致世界各地气候异常,威胁着人类的生存。减少温室气体是解决日益令人担忧的全球变暖问题的关键,这需要将大气中的二氧化碳转化为其他物质。光催化技术是一种环保解决方案,它只需利用太阳能和水就能将二氧化碳转化为有用的物质,如天然气。生产出的天然气可在日常生活中用作供暖、制冷系统和车辆的燃料。光催化材料的改进研究小组将吸收可见光和红外线的硒化镉与二氧化钛(一种金属氧化物和著名的光催化材料)结合起来,高效地将二氧化碳转化为天然气。以前,人们曾将具有周期性晶格结构的结晶二氧化钛作为光催化材料进行分析。然而,由于颗粒的规则排列,钛的三价阳离子(Ti3+)的活性位点的形成受到了限制。为了克服这个问题,In教授的团队使用无定形二氧化钛改进了催化反应,因为无定形二氧化钛可以通过缺乏晶格结构周期性的不规则颗粒排列形成更多的Ti3+活性位点。除了催化作用得到改善外,电荷转移过程也很稳定,可确保有足够的电子参与反应。这有助于将二氧化碳转化为碳化合物,特别是甲烷燃料。此外,与需要高温再生的传统光催化剂不同,无定形催化剂在不加热的情况下向反应器供氧,可在一分钟内再生。高效率和未来研究方向研究小组新开发的无定形二氧化钛-硒化镉光催化剂(TiO2-CdSe)在光反应18小时后的前6小时内甲烷转化率仍高达99.3%,是具有相同成分的晶体光催化剂(C-TiO2-CdSe)的4.22倍。"这项研究的重要意义在于,我们开发出了一种具有再生活性位点的催化剂,并通过计算化学研究确定了利用非晶态催化剂将二氧化碳转化为甲烷的机理,"DGISTIn教授说。"我们将开展后续研究,以改善无定形光催化剂的能量损失,并提高其长期稳定性,从而实现该技术的未来商业化。"编译来源:ScitechDailyDOI:10.1016/j.apcatb.2024.124006...PC版:https://www.cnbeta.com.tw/articles/soft/1434187.htm手机版:https://m.cnbeta.com.tw/view/1434187.htm

封面图片

太阳能“裂水制氢”突破:效率是同类装置10倍 成本还更低

太阳能“裂水制氢”突破:效率是同类装置10倍成本还更低几十年来,世界各地的研究人员一直在寻找利用太阳能来生产清洁能源氢的方法,即分解水分子形成氢和氧的方法。然而,这些努力大多以失败告终,因为成本太高,而试图以低成本完成的工艺往往又效果不佳。但研究人员称,这款全新装置最大的好处是降低了可持续氢的成本。这是通过缩小半导体来实现的,半导体通常是设备中最昂贵的部分。该团队的自修复半导体器件可以承受相当于160个太阳的强光。研究成果已于近期发表在了《自然》杂志上。“最终,我们相信人工光合作用设备将比自然光合作用更有效,这将为实现碳中和提供一条途径,”密歇根大学电气和计算机工程教授ZetianMi说。据研究人员介绍称,这一突出成果来自两个方面的进展。第一个是在不破坏半导体器件的情况下,承受高强光的照射。“与一些只在低光强度下工作的半导体相比,我们将半导体的尺寸减小了100多倍,”密歇根大学电气和计算机工程研究员、该研究的第一作者PengZhou说。,“用我们的技术生产氢气可能会非常便宜。”第二个是新装置能利用太阳光谱中能量较高的部分来分解水,同时利用光谱中能量较低的部分来提供热量来促进反应。这种“魔力”是由一种半导体催化剂实现的,这种催化剂在利用阳光驱动化学反应时,会随着使用而自我修复,减轻催化剂通常会经历的退化反应。具体而言,这种催化剂由氮化铟镓纳米结构制成,生长在硅表面。半导体晶片捕获光线,将其转化为自由电子和空穴。纳米结构中布满了直径为1/2000毫米的纳米级金属球,利用这些电子和空穴来帮助引导反应。面板上有一层简单的绝缘层,将温度保持在75摄氏度的舒适温度,温度足以促进分解反应,同时这个温度也能使半导体催化剂发挥良好作用。在室外版本的实验(阳光和温度难以把控)中,将太阳能转化为氢燃料的效率达到了6.1%。而在室内,该系统的效率达到了9%的效率。值得一提的是,研究人员指出,除了处理高光强度外,它还可以在通常对半导体不利的高温下更好地工作。高温加速了水的分解过程,额外的热量也促使氢和氧保持分离,而不是重新结合并再次形成水。这两种方法都帮助研究小组收获了更多的氢气。未来,该团队打算解决的下一个挑战是进一步提高效率,并实现可以直接输入燃料电池的超高纯度氢。...PC版:https://www.cnbeta.com.tw/articles/soft/1337921.htm手机版:https://m.cnbeta.com.tw/view/1337921.htm

封面图片

剑桥大学创造的新型太阳能设备可将脏水变成氢燃料和饮用水

剑桥大学创造的新型太阳能设备可将脏水变成氢燃料和饮用水研究人员发明了一种太阳能装置,可将脏水转化为清洁的氢气和净水图/ChanonPornrungroj/剑桥大光催化水分裂技术可将太阳光直接转化为可储存的氢气,但通常需要纯净水和土地来安装设备,同时还会产生无法利用的废热。由于水是一种宝贵的资源,利用任何未经处理的水源(如河流、海洋、水库或工业废水)的光催化装置将是一种更可持续的选择。因此,剑桥大学的研究人员从光合作用过程中汲取灵感,创造了一种太阳能装置,能够同时利用污染水或海水生产清洁氢燃料和清洁饮用水。该研究的第一作者ChanonPornrungroj说:"将太阳能燃料生产和水生产结合在一个装置中是非常棘手的。太阳能驱动的水分裂(水分子被分解成氢气和氧气)需要从完全纯净的水开始,因为任何污染物都可能毒害催化剂或引起不必要的化学副反应。"研究人员希望模仿植物的光合作用能力,但与以往利用洁净水源生产绿色氢燃料的设备不同,他们希望自己的设备能够使用受污染的水,从而使其在难以找到洁净水的地区也能使用。研究报告的合著者阿里芬-穆罕默德-安努阿尔(AriffinMohamadAnnuar)说:"在偏远或发展中地区,洁净水相对稀缺,净水所需的基础设施也不容易获得,因此水分裂极为困难。一个可以利用受污染的水进行工作的装置可以同时解决两个问题:它可以分水制造清洁燃料,也可以制造清洁饮用水"。他们将一种吸收紫外线的光催化剂沉积在一种吸收红外线的纳米结构碳网上,这种碳网对光和热都有很好的吸收作用,从而产生光催化剂用来制造氢气的水蒸气。经过拒水处理的多孔碳网有助于光催化剂漂浮,并使其远离下面的水,从而避免污染物干扰其功能。此外,这种结构还能让装置利用更多的太阳能量。装置构造示意图Pornrungroj等人/剑桥大学安努阿尔说:"制造太阳能燃料的光驱动过程只使用了太阳光谱的一小部分,还有大量光谱没有使用。"因此,研究人员在浮动装置的顶部使用了一层白色的紫外线吸收层,通过水分裂来制氢。太阳光谱中的其余光线被传输到装置底部,使水汽化。研究人员说,这更接近于模仿植物的蒸腾作用,即水在植物体内的流动过程,以及水从叶、茎和花等气生部分蒸发的过程。Pornrungroj说:"这样,我们就能更好地利用光--我们获得了用于制氢的水蒸气,剩下的就是水蒸气了。我们就真正模仿了真实的叶子,因为我们现在已经能够将蒸腾作用的过程纳入其中。"研究人员利用真实世界的开放水源对他们的装置进行了测试,包括剑桥市中心坎河的水和造纸业的浑浊工业废水。在人工海水中,该装置在154小时后保持了80%的初始性能。研究人员说,由于光催化剂与水源中的污染物隔离,并保持相对干燥,因此该装置可以保持其运行稳定性。它对污染物的耐受性很强,而且浮动设计使基底可以在非常浑浊或泥泞的水中工作,因此这是一个用途广泛的系统。研究人员认为,他们的设备有可能解决可持续发展和循环经济问题。这项研究的通讯作者ErwinReisner说:"我们的设备仍然只是一个原理验证,但如果我们要发展真正的循环经济和可持续的未来,我们就需要这些解决方案。气候危机与污染和健康问题密切相关,开发一种有助于同时解决这两个问题的方法将改变许多人的命运。"这项研究发表在《自然-水》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1396809.htm手机版:https://m.cnbeta.com.tw/view/1396809.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人