超越螺旋:DNA的复杂折叠结构揭示其新功能

超越螺旋:DNA的复杂折叠结构揭示其新功能这个分子被设计用来模拟一种被称为绿色荧光蛋白(GFP)的蛋白质的行为。GFP最初从水母中提取,已成为实验室的一个重要工具,作为细胞内的发光标记或信标。显示Lettuce结构的插图,Lettuce是一种结合并激活来自绿色荧光蛋白的荧光团的DNA。资料来源:LuizF.M.Passalacqua这些发现推动了关于如何使DNA折叠成复杂形状的科学,并将帮助研究人员为各种实验室和临床应用构建这种DNA分子。例如,模仿GFP的全DNA荧光标签通常是生物研究和诊断测试工具中标记目标DNA片段的理想选择,而且制作成本相对低廉。研究报告的共同作者、格林伯格-斯塔尔药理学教授、威尔康奈尔医学院桑德拉和爱德华-梅耶癌症中心的成员萨米-贾弗里博士说:"这些发现真的改变了我们对我们能用DNA做什么的理解。"自然界中的DNA大多以双链、"扭曲的阶梯"或"螺旋"的形式存在,并作为遗传信息的一个相对稳定的存储。细胞中所有其他复杂的生物过程都是由其他类型的分子完成的,尤其是蛋白质。去年,Jaffrey博士及其同事报告说发现了一种这样的分子:一种单链DNA,其折叠方式使其能够模仿GFP的活动。这种DNA分子,Jaffrey博士因其荧光发射的颜色而称之为"莴苣",它通过与另一种小的有机分子,即类似于GFP核心的潜在荧光"荧光团"结合,并以一种激活其荧光能力的方式挤压它而起作用。研究人员展示了莴苣-荧光团组合作为快速检测SARS-CoV-2(COVID-19的原因)的荧光标签。Jaffrey博士和他的团队通过制作许多单链DNA并筛选出具有所需荧光团激活能力的单链DNA而发现了莴苣。但他们不知道莴苣用什么结构来获得这种能力。为了确定这种结构,他们在新的研究中求助于他们的长期合作者,NHLBI高级调查员AdrianR.Ferré-D'Amaré博士。在Ferré-D'Amaré博士团队的研究员LuizPassalacqua博士领导的研究中,使用了先进的结构成像技术,包括低温电子显微镜,以解决莴苣的原子级分辨率结构。他们发现莴苣折叠成一种形状,在其中心有一个四向的DNA连接点,这种类型是以前从未见过的,以激活荧光体的方式包围着它。他们还观察到,莴苣的折叠是通过核碱基之间的键固定在一起的--这些核碱基是DNA的组成部分,通常被称为四个字母的DNA字母表中的"字母"。Ferré-D'Amaré博士说:"我们所发现的不是DNA试图像蛋白质一样;它是一种DNA,正在做GFP所做的事情,但以它自己的特殊方式。"研究人员说,这些发现应能加快荧光DNA分子的开发,如用于快速诊断测试的生菜,以及其他一系列科学应用,其中基于DNA的荧光标签是可取的。Jaffrey博士说:"像这样的研究对于创造新的基于DNA的工具将是至关重要的。"...PC版:https://www.cnbeta.com.tw/articles/soft/1368671.htm手机版:https://m.cnbeta.com.tw/view/1368671.htm

相关推荐

封面图片

推动遗传学发现:对DNA复制的分子马达的新认识

推动遗传学发现:对DNA复制的分子马达的新认识CMG的重要任务是分离DNA双螺旋的两条链,以便它们所编码的信息能够被读取和复制。研究人员和该出版物的第一作者DanielRamírezMontero说:"了解CMG如何沿着DNA移动对于我们理解DNA复制至关重要。研究DNA复制是非常重要的,因为这一过程中的错误可能导致遗传疾病或癌症。"实验装置示意图:(上图)用光学镊子(红色光束)固定含有CMG的DNA分子,同时用扫描激光(绿色光束)对其进行拍照;CMG马达用蓝色描述。下图)用光学镊子固定在未标记的DNA分子上的荧光标记的CMG分子马达(绿点)的实际图像。资料来源:改编自RamirezMontero,etal,NatureCommunications,2023。在活细胞中,CMG是通过涉及36种不同蛋白质的复杂的生物化学反应级联来组装和激活的。由斯宾诺莎奖得主NynkeDekker教授领导的一组代尔夫特大学研究人员与弗朗西斯-克里克研究所小组负责人JohnDiffley博士合作,开发了一种在细胞外进行这一严格控制的过程并测量单个CMG分子马达运动的方法。研究人员从细胞中提取了所有36种蛋白质,在DNA上建立起CMG。通过将荧光标签附着在一些蛋白质上,他们可以在荧光显微镜下直接观察CMG分子马达的运动。"通过这种新方法,我们能够观察到从无到有的单个CMG的运动。我们用光学镊子夹住含有CMG的DNA不动,以便于观察,然后拍摄CMG沿DNA移动的影片。"RamírezMontero解释说:"通过这种方式,我们可以首次在单分子水平上测量其运动。"CMG马达沿着一个由光学陷阱固定的DNA分子移动的例子。资料来源:摘自RamírezMontero,etal.,NatureCommunications,2023。利用他们自下而上的方法,结合尖端的生物化学和生物物理学,该研究小组首次能够直接看到从头开始组装的单个CMG马达的运动,并以前所未有的分辨率测量这种运动。此外,他们还意外地发现,当一种叫做ATP的关键分子不存在时,CMG可以沿着DNA随机移动;此外,他们还表明,随后ATP的重新结合使得CMG能够紧紧抓住DNA,从而停止其随机运动。这种停止是很重要的,因为它可能促进了CMG的激活,这是启动DNA复制的一个关键过程。这项工作将为进一步的研究铺平道路,这些研究可能会发现DNA复制中关键过程的未知细节。这些发现反过来可以让我们更接近了解细胞如何在每次细胞分裂时忠实地传递它们的遗传信息,以及更好地了解这一过程中可能导致遗传疾病或癌症发展的错误。生物系统乍看之下可能非常复杂和混乱,但通过在这种分辨率下观察它们,我们可以理解它们背后简单而优雅的物理学。...PC版:https://www.cnbeta.com.tw/articles/soft/1355739.htm手机版:https://m.cnbeta.com.tw/view/1355739.htm

封面图片

DNA折纸纳米结构: 重塑病毒外壳形状 推动生物医学发展

DNA折纸纳米结构:重塑病毒外壳形状推动生物医学发展DNA折纸纳米结构(蓝色)可用于设计病毒颗粒(灰色)的形状。直径为28纳米的原生噬菌体显示为绿灰色。资料来源:MauriA.Kostiainen/阿尔托大学科研团队通过生成"结构化基因组"模板来组装囊壳蛋白,从而解决了这一难题。他们利用刚性DNA折纸结构来防止柔性基因组变形和形成不需要的形状。这些结构的尺寸很小,从几十纳米到几百纳米不等,但完全由DNA构成,并被精确地折叠成所需的模板形状。"我们的方法基于DNA纳米结构的负电荷与帽状蛋白的正电荷结构域之间的静电相互作用,以及单个蛋白之间的内在相互作用。通过改变蛋白质的用量,我们可以微调高度有序的蛋白质层的数量,从而将DNA折纸封装起来,"论文第一作者、阿尔托大学博士研究员伊里斯-塞茨(IrisSeitz)说。"通过使用DNA折纸作为模板,我们可以引导噬菌体蛋白形成用户定义的大小和形状,从而形成长度和直径都非常明确的组合体。通过测试各种DNA折纸结构,我们还了解了模板的几何形状对整个组装的影响,"Seitz补充说。"在低温电子显微镜成像技术的帮助下,我们能够观察到组装后高度有序的蛋白质,并由此测量出不同模板对组装几何形状产生的微小变化,"赫尔辛基大学的合作科学家JuhaHuiskonen教授解释说。"我们发现了一种简单而有效的策略,可以将帽状蛋白(重新)引导到所需的形状。这种方法适应性强,因此并不局限于单一的噬菌体蛋白类型,正如我们用四种不同病毒的噬菌体蛋白所证明的那样。此外,我们还可以调整我们的模板,使其更贴近应用,例如将RNA整合到折纸中,然后将其转化为有用的或特定位点的蛋白质,"该研究项目负责人阿尔托大学教授MauriKostiainen解释说。虽然DNA折纸结构是一种很有前途的生物系统接口材料,但它们存在不稳定性,尤其是在有DNA降解酶存在的情况下。"但在实验中,我们可以清楚地观察到,蛋白质层能有效保护封装的DNA纳米结构不被降解。"Kostiainen总结说:"通过将保护与核酸折纸的功能特性相结合,包括将DNA或信使RNA与其他货物分子一起输送的可能性,我们相信我们的方法为生物医学工程提供了有趣的未来方向。"...PC版:https://www.cnbeta.com.tw/articles/soft/1372373.htm手机版:https://m.cnbeta.com.tw/view/1372373.htm

封面图片

破解细胞密码:蛋白质折叠与疾病疗法的新见解

破解细胞密码:蛋白质折叠与疾病疗法的新见解马萨诸塞大学阿默斯特分校(UMassAmherst)的一项突破性研究破解了附着在蛋白质上的糖是如何引导蛋白质正确折叠的,为治疗由蛋白质错误折叠引起的疾病提供了可能。研究小组的方法揭示了一种特定酶在折叠过程中发挥的关键作用。这种蛋白质(红色)被糖(蓝色和绿色)糖苷化。资料来源:马萨诸塞大学阿默斯特分校揭开丝氨酸的神秘面纱这项发表在《分子细胞》(MolecularCell)杂志上的研究探讨了与多种疾病有关的丝氨酸蛋白家族成员。这项研究首次探讨了附着在丝蛋白上的碳水化合物的位置和组成如何确保它们正确折叠。从肺气肿、囊性纤维化到阿尔茨海默病等严重疾病,都可能因细胞对蛋白质折叠的监督出错而导致。找出负责高保真折叠和质量控制的糖蛋白代码,可能是针对多种疾病的药物疗法的一种很有前景的方法。科学家们曾一度认为,DNA是支配生命的唯一代码,一切都受DNA的四个构建模块--A、C、G和T--如何组合和重组的支配。但近几十年来,人们逐渐认识到还有其他代码在起作用,尤其是在人体细胞的蛋白质工厂--内质网(ER)--这个膜封闭的腔室中,蛋白质折叠的起始点就是内质网。约有7000种不同的蛋白质在ER中成熟,占人体所有蛋白质的三分之一。这些分泌蛋白统称为"分泌体"--负责人体从酶到免疫和消化系统的一切功能,必须正确形成才能使人体正常运作。蛋白伴侣在蛋白质折叠中的作用被称为"伴侣"的特殊分子有助于将蛋白质折叠成最终形状。它们还能帮助识别折叠不完全正确的蛋白质,为其重新折叠提供额外的帮助,或者,如果它们折叠错误得无可救药,则在它们造成损害之前将其锁定并加以破坏。然而,作为细胞质量控制部门的一部分,伴侣系统本身有时也会失效,一旦失效,就会给我们的健康带来灾难性的后果。发现ER中基于碳水化合物的伴侣系统要归功于麻省大学阿默斯特分校生物化学和分子生物学教授、本文资深作者之一丹尼尔-希伯特(DanielHebert)在20世纪90年代作为博士后开展的开创性工作。"我们现在拥有的工具,包括阿默斯特大学应用生命科学研究所的糖蛋白组学和质谱分析技术,让我们能够回答25年来一直悬而未决的问题,"Hebert说。"这篇新论文的第一作者凯文-盖伊(KevinGuay)所做的事情是我刚开始工作时梦寐以求的。"在这些悬而未决的问题中,最迫切的问题是:伴侣如何知道7000种不同的类似折纸的蛋白质何时正确折叠?理解蛋白质质量控制的创新我们现在知道,答案涉及一种名为UGGT的"ER守门员"酶,以及大量与蛋白质氨基酸序列中特定位点相连的碳水化合物标签,即N-糖。盖伊正在完成马萨诸塞大学阿默斯特分校分子细胞生物学项目的博士学业,他重点研究了两种特殊的哺乳动物蛋白质,即α-1抗胰蛋白酶和抗凝血酶。他和他的合著者利用CRISPR编辑细胞,修改了ER伴侣网络,以确定N-聚糖的存在和位置如何影响蛋白质折叠。他们观察了疾病变体被ER守门员UGGT识别的过程,为了更仔细地观察,他们利用质谱技术开发了一系列创新的糖蛋白组学技术,以了解蛋白质表面的聚糖发生了什么变化。他们发现,UGGT酶会在特定位置用糖"标记"折叠错误的蛋白质。这是一种代码,然后伴侣可以通过读取这种代码来确定折叠过程中哪里出错以及如何修复。影响和未来方向盖伊说:"这是我们第一次能够看到UGGT在人体细胞制造的蛋白质上添加糖以进行质量控制的位置。我们现在有了一个平台,可以扩展我们对糖标签如何将蛋白质送入进一步质量控制步骤的理解,我们的工作表明,UGGT是靶向药物治疗研究的一个很有前景的途径。""这项研究最令人兴奋的地方在于",马萨诸塞大学阿默斯特分校生物化学与分子生物学杰出教授、论文共同作者之一莱拉-吉拉什(LilaGierasch)说,"我们发现聚糖在ER中充当了蛋白质折叠的代码。UGGT所扮演角色的发现为未来了解并最终治疗由错误折叠蛋白质导致的数百种疾病打开了一扇大门"。参考文献《ER伴侣使用蛋白质折叠和质量控制糖代码》,作者:KevinP.Guay、HaipingKe、NathanP.Canniff、GracieT.George、StephenJ.Eyles、MalaiyalamMariappan、JosephN.Contessa、AnneGershenson、LilaM.Gierasch和DanielN.Hebert,2023年12月4日,《分子细胞》。DOI:10.1016/j.molcel.2023.11.006编译来源:ScitechDaily...PC版:https://www.cnbeta.com.tw/articles/soft/1403363.htm手机版:https://m.cnbeta.com.tw/view/1403363.htm

封面图片

研究人员打造DNA折叠涡轮 直径仅为25纳米

研究人员打造DNA折叠涡轮直径仅为25纳米研究人员开发出一种DNA折叠纳米涡轮,它具有根据离子浓度改变旋转方向的独特能力。这一进展为未来在细胞水平上的药物输送提供了潜力,并强调了利用盐梯度能量的前景。图片来源:CeesDekker实验室/SciXel从风车到飞机,流动驱动的涡轮机是塑造我们社会的许多革命性机器的核心。甚至生命本身的基本过程也严重依赖涡轮机,例如为生物细胞产生燃料的FoF1-ATP合酶和推动细菌的细菌鞭毛马达。这种纳米涡轮机有一个直径为25纳米的转子,由DNA材料制成,叶片按右手或左手方向配置,以控制旋转方向。为了运转,这种结构要停靠在强大的水流中,水流受电场或盐浓度差的控制,从薄膜上的纳米孔(一个微小的开口)流出。我们用涡轮机驱动一根刚性杆,每秒可转10圈。DNA折叠纳米涡轮的旋转受离子浓度的影响,为先进的药物输送和利用盐梯度获取能量铺平了道路。图片来源:CeesDekker实验室/SciXel这项研究最引人入胜的发现之一是DNA折纸纳米涡轮旋转的独特性。它的行为受离子浓度的影响,根据溶液中Na+离子的浓度,同一个涡轮可以顺时针或逆时针旋转。这一纳米级领域独有的独特功能是离子、水和DNA之间错综复杂的相互作用的结果。这些发现得到了伊利诺伊大学AlekseiAksimentiev小组大量分子动力学模拟和哥廷根大学MPI研究所RaminGolestanian理论建模的严格支持,有望拓展纳米技术的视野,并提供大量应用。例如,未来我们也许可以利用DNA折纸制作纳米机器,将药物输送到人体内的特定类型细胞中。这项研究的负责人塞斯-德克尔(CeesDekker)介绍了他们的研究方法:"我们与慕尼黑工业大学亨德里克-迪茨(HendrikDietz)实验室的合作者一起,利用以前在DNA旋转电机方面的研究成果,创造出了一种可以完全控制其设计和运行的涡轮机。DNA折纸技术利用互补DNA碱基对之间的特殊相互作用来构建动态三维纳米物体。这种设计可以通过叶片的手感控制涡轮在纳米孔中的旋转方向,并可将涡轮直接集成到其他纳米机器上。"这项研究成果是继去年推出DNA有源纳米转子之后的又一成果,DNA有源纳米转子是一种能够将电能或盐梯度转化为实际机械功的自配置装置。更多信息用DNA构建纳米级转子。研究人员已经揭示了利用纳米孔中的水和盐推动纳米级转子的基本原理。在合理设计的推动下,今年的突破标志着其工作进入了下一个阶段,为未来的仿生跨膜机器奠定了基础,并有可能利用盐梯度的能量,这是生物马达能够使用的重要能源。...PC版:https://www.cnbeta.com.tw/articles/soft/1393237.htm手机版:https://m.cnbeta.com.tw/view/1393237.htm

封面图片

新的DNA测序方法打开了小分子药物与目标基因组结合时的“黑箱”

新的DNA测序方法打开了小分子药物与目标基因组结合时的“黑箱”研究人员创造了一种新的DNA测序技术,称为Chem-map,它使研究人员能够以无与伦比的精度进行小分子-基因组相互作用的原位测绘。"了解药物如何在体内发挥作用对于创造更好、更有效的治疗方法至关重要,"来自优素福-哈米德化学系的共同第一作者ZutaoYu博士说。"但是当治疗药物进入一个拥有30亿个碱基的基因组的癌细胞时,就像进入了一个黑盒子"。这种被称为Chem-map的强大方法通过使研究人员能够检测到小分子药物与其在DNA基因组上的目标相互作用的位置,揭开了这个基因组黑箱的面纱。每年,数百万癌症患者接受基因组靶向药物的治疗,如多柔比星。但是,尽管经过几十年的临床使用和研究,人们对基因组的分子作用模式仍然不甚了解。由ShankarBalasubramanian爵士教授领导的剑桥大学研究人员概述了一种新的DNA测序方法,可以检测小分子药物与目标基因组相互作用的位置和方式。资料来源:剑桥大学"很多拯救生命的药物直接与DNA相互作用,以治疗癌症等疾病,"共同第一作者JochenSpiegel博士说。"我们的新方法可以精确绘制药物与基因组结合的位置,这将有助于我们在未来开发更好的药物"。Chem-map使研究人员能够以前所未有的精度进行小分子-基因组相互作用的原位绘图,方法是使用一种称为小分子定向转座酶Tn5标签化的策略。这可以检测出基因组中小分子与基因组DNA或DNA相关蛋白结合的结合点。在这项研究中,研究人员利用Chem-map确定了广泛使用的抗癌药物多柔比星在人类白血病细胞中的直接结合点。该技术还显示了对已经暴露于组蛋白去乙酰化酶(HDAC)抑制剂tucidinostat的细胞使用doxorubicin的联合疗法如何能有潜在的临床优势。该技术还被用来绘制某些分子在DNAG-四联体(被称为G4s)上的结合点。G4s是四股二级结构,与基因调节有关,可能是未来抗癌治疗的目标。Yu说:"我非常自豪,我们已经能够解决这个长期存在的问题--我们建立了一个高效的方法,这将为新的研究打开许多道路。"领导这项研究的ShankarBalasubramanian教授、爵士说。"化学地图是一种强大的新方法,可以检测基因组中小分子与DNA或DNA相关蛋白结合的部位。它提供了关于一些药物疗法如何与人类基因组相互作用的巨大洞察力,并使开发更有效和更安全的药物疗法变得更加容易。"...PC版:https://www.cnbeta.com.tw/articles/soft/1342747.htm手机版:https://m.cnbeta.com.tw/view/1342747.htm

封面图片

科学家给蚊子喂食DNA以方便跟踪其传播疾病的情况

科学家给蚊子喂食DNA以方便跟踪其传播疾病的情况现有的一种替代方法是让荧光粉沾上蚊子,当它们在另一个地方被重新捕获时,仍然会有荧光粉的痕迹。然而,据科罗拉多州立大学的科学家称,这种方法"容易出错且不可靠"。考虑到这种局限性,该大学的RebekahKading副教授将目光投向了她的同事ChrisSnow副教授创建的微观工程蛋白晶体。这些晶体由空肠弯曲菌中发现的一种蛋白质自我组装而成,而且它们有非常多的孔。合成DNA的片段可以被安全地放置在孔隙中,基本上可以作为"条形码",随后可以通过定量聚合酶链反应等实验室技术进行读取。科学家的想法是,加载DNA的晶体(隐藏在更大的食物中)最初被喂给蚊子幼虫,在一个已经自然存在的幼虫的地理位置。即使当这些幼虫成熟为成年蚊子时,摄入的DNA--这是特定于该地点的--仍然存在于它们的肠道中。当这些成蚊在另一地点的陷阱中被捕获并在实验室进行分析时,它们独特的DNA条形码显示了它们的来源地。研究小组成员在科罗拉多州柯林斯堡的一个现场收集蚊子进行分析RebekahKading/科罗拉多州立大学在过去的三个夏天,该技术已经在科罗拉多州柯林斯堡市的不同地点进行了测试,并取得了可喜的成果。现在正在进行进一步的研究,以更好地了解为什么DNA标签在肠道中持续如此之久,并开发使其持续更长时间的方法。希望很快能在热带国家进行试验,那里的蚊子传播的疾病是一个主要问题。Kading说:"我认为这将为已经存在的实时蚊子监测和控制行动增加一个全新的知识层面。"这项研究在最近发表在PNASNexus杂志上的一篇论文中进行了描述。...PC版:https://www.cnbeta.com.tw/articles/soft/1334093.htm手机版:https://m.cnbeta.com.tw/view/1334093.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人