科学家发现儿童记忆发展背后的分子机制

科学家发现儿童记忆发展背后的分子机制小白蛋白中间神经元(蓝色)被神经元周围网包围。图片来源:病童医院(SickKids)在由博士领导的《科学》杂志上发表的一项研究中。PaulFrankland和SheenaJosselyn都是SickKids神经科学与心理健康项目的资深科学家,研究人员查明了小鼠从要点状记忆转变为情景记忆的分子机制。研究小组指出,了解这种通常发生在四岁到六岁儿童之间的变化,可能会为儿童发展研究和影响大脑的疾病(从自闭症谱系障碍到脑震荡)提供新的见解。“几十年来,研究人员一直在研究情景记忆是如何发展的,但由于精确细胞干预的发展,我们现在第一次能够在分子水平上研究这个问题,”弗兰克兰说,他也是加拿大研究主席。认知神经生物学。神经周围网络的增长可能会引发记忆的变化在成人中,记忆痕迹(也称为印迹)由10%到20%的神经元组成,但这些印迹的总体大小在幼儿中翻倍,其中20%到40%的神经元构成支持记忆的印迹。那么为什么要改变呢?海马体是大脑中负责学习和记忆的部分,包含多种神经元,其中包括一种称为表达小清蛋白(PV)中间神经元的抑制细胞。这些抑制细胞限制印迹的大小并实现记忆特异性。研究小组发现,随着这些中间神经元的成熟,记忆会从一般记忆转变为更具体的记忆,并形成适当大小的印迹。利用德国神经退行性疾病中心分子神经可塑性研究小组负责人AlexanderDityatev博士开发的病毒基因转移技术,研究人员决定更深入地研究并探索这种变化的原因。他们发现,随着海马体中这些中间神经元周围形成密集的细胞外基质(称为神经周网络),中间神经元就会成熟,从而改变我们的大脑创建印迹和存储记忆的方式。“一旦我们确定神经周围网络是中间神经元成熟的关键因素,我们就能够加速该网络的发育,并在幼年小鼠中创造特定的情景记忆,而不是一般的记忆,”加拿大电路基础研究主席Josselyn说。的记忆。提供有关大脑功能和认知的新见解虽然研究小组能够通过加速神经周围网络的发育来触发记忆类型的这种变化,但他们也指出,主旨记忆和情景记忆之间年龄差异的原因不应被忽视。“当你思考记忆的用途时,你会发现儿童的记忆功能与成人不同,这是有道理的,”博士AdamRamsaran解释道。弗兰克兰实验室的候选人和该研究的第一作者。“三岁的时候,你不需要记住细节。要点式的记忆可以帮助孩子建立一个庞大的知识库,随着年龄的增长和经验的丰富,这些知识库会变得更加具体。”在这些分子发现的基础上,研究小组通过提供丰富的环境来形成特定记忆,从而加速了神经周围网络的生长,这一发现有助于为SickKids和多伦多大学正在进行的儿童发展研究提供信息。“除了记忆发育之外,我们还发现大脑不同感觉系统中存在类似的成熟型机制,”弗兰克兰说。“相同的大脑机制可能被多个不同的大脑区域用于多种不同的目的,这为研究和合作提供了令人兴奋的新机会。”...PC版:https://www.cnbeta.com.tw/articles/soft/1370373.htm手机版:https://m.cnbeta.com.tw/view/1370373.htm

相关推荐

封面图片

科学家发现中风后刺激大脑自我修复的新机制

科学家发现中风后刺激大脑自我修复的新机制缺血性中风后,人们通常可以通过强化康复治疗恢复部分丧失的脑功能,这表明大脑在受伤后可以自我恢复。但直到现在,神经修复的内在机制仍然难以捉摸。众所周知,组织损伤后产生的各种脂质可以调节损伤后的炎症,因此东京医科齿科大学的研究人员将重点放在了这一点上。研究的通讯作者TakashiShichita说:"有证据表明,组织损伤后会产生更多的脂质,并有助于调节炎症。我们研究了缺血性中风后小鼠体内脂质代谢物产生的变化。有趣的是,一种名为二氢-γ-亚麻酸(DGLA)的特殊脂肪酸及其衍生物的水平在中风后有所增加。"DGLA属于ω-6脂肪酸家族,具有已知的抗炎特性。研究人员深入研究后发现,PLA2GE2(磷脂酶A2组IIE)调节着DGLA的释放。通过操纵小鼠体内PLA2GE2的表达,他们发现它会影响脑细胞的恢复。缺乏这种酶会导致炎症加剧、神经元修复刺激因子表达降低以及组织损失增加。这一发现使研究人员进一步深入大脑修复途径。"当我们观察缺乏PLA2GE2的小鼠体内表达的基因时,我们发现一种叫做肽基精氨酸脱氨酶4(PADI4)的蛋白质水平很低,"该研究的第一作者AkariNakamura说。"PADI4调节[参与大脑修复的基因]的转录和炎症反应。值得注意的是,在小鼠体内表达PADI4限制了缺血性中风后组织损伤和炎症的程度!"从DGLA到PLA2GE2再到PADI4,研究人员绘制出了参与大脑修复的整个信号通路。虽然这项研究使用的是小鼠模型,但研究人员发现,在人类中,中风受损部位周围的神经元会表达PLA2GE2和PADI4,这表明我们体内也存在这种恢复途径。研究人员说,发现触发大脑修复的新机制可能会开发出促进PADI4作用的疗法,加快缺血性中风后的恢复。DGLA存在于植物油、谷物、大多数肉类和奶制品中,摄入后会在大脑中积累,这表明饮食疗法有可能预防中风后出现的神经损伤。目前,ω-3脂肪酸二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)是唯一因其抗炎特性和降低心脏病风险的能力而得到推广的营养补充剂。"虽然还需要进行详细的临床研究,但我们的发现可能会改变目前认为只有EPA或DHA才有益于预防动脉粥样硬化和血管疾病的模式"。这项研究发表在《神经元》(Neuron)杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1376349.htm手机版:https://m.cnbeta.com.tw/view/1376349.htm

封面图片

科学家们发现了一种新的日常节奏 使人们了解到大脑活动是如何被微调的

科学家们发现了一种新的日常节奏使人们了解到大脑活动是如何被微调的该结果发表在《PLOS生物学》杂志上,可能有助于解释细微的突触变化如何改善人类的记忆。来自国家神经疾病和中风研究所(NINDS)的研究人员领导了这项研究,该研究所是国家卫生研究院的一部分。"抑制对大脑功能的各个方面都很重要。但二十多年来,大多数睡眠研究都集中在了解兴奋性突触上,"NINDS的高级调查员WeiLu博士说。"这是一项及时的研究,试图了解睡眠和清醒如何调节抑制性突触的可塑性"。Lu博士实验室的博士后WuKunwei调查了小鼠在睡眠和清醒时抑制性突触的情况。从海马体(一个参与记忆形成的大脑区域)的神经元进行的电记录显示了一种以前未知的活动模式。在清醒状态下,稳定的"强直"抑制活动增加,但快速的"阶段性"抑制活动减少。他们还发现,在清醒的小鼠神经元中,抑制性电反应的活动依赖性增强得多,这表明清醒,而不是睡眠,可能在更大程度上加强这些突触。抑制性神经元使用神经递质γ-氨基丁酸(GABA)来减少神经系统的活动。这些神经元在抑制性突触处将GABA分子释放到突触裂隙中,突触裂隙是神经元之间神经递质扩散的空间。这些分子与邻近的兴奋性神经元表面的GABAA受体结合,使其减少发射次数。进一步的实验表明,清醒时的突触变化是由α5-GABAA受体数量增加所驱动的。当受体在清醒小鼠体内被阻断时,活动依赖性的相位电反应的增强就会减弱。这表明,清醒时GABAA受体的积累可能是建立更强大、更有效的抑制性突触的关键,这是一个被称为突触可塑性的基本过程。"当你在白天学习新信息时,神经元受到来自大脑皮层和许多其他区域的兴奋性信号的轰击。"Lu博士说:"为了将这些信息转变为记忆,你首先需要调节和完善它--这就是抑制的作用。"先前的研究表明,海马体的突触变化可能是由抑制性中间神经元发出的信号驱动的,这种特殊类型的细胞在大脑中只占大约10-20%的神经元。在海马中有超过20种不同的中间神经元亚型,但最近的研究强调了两种类型,即被称为副白蛋白和体蛋白,它们关键性地参与了突触调节。为了确定哪种神经元负责他们所观察到的可塑性,Lu博士的团队使用了光遗传学,这是一种使用光来打开或关闭细胞的技术,并发现清醒状态导致更多的α5-GABAA受体和来自副白蛋白的更强连接,而不是体蛋白的神经元。人类和小鼠拥有类似的神经回路,是记忆储存和其他基本认知过程的基础。这种机制可能是抑制性输入精确控制神经元之间和整个大脑网络的信息起伏的一种方式。Lu博士说:"抑制实际上是相当强大的,因为它允许大脑以一种微调的方式执行,这基本上是所有认知的基础。"由于抑制对大脑功能的几乎每一个方面都至关重要,这项研究不仅有助于帮助科学家了解睡眠-觉醒周期,而且有助于了解植根于大脑节律异常的神经系统疾病,如癫痫。在未来,Lu博士的研究小组计划探索GABAA受体贩运到抑制性突触的分子基础。这项研究的部分资金来自于美国国家疾病预防控制中心的院内研究项目。...PC版:https://www.cnbeta.com.tw/articles/soft/1335699.htm手机版:https://m.cnbeta.com.tw/view/1335699.htm

封面图片

科学家发现灵长类动物和其他动物之间大脑的关键差异

科学家发现灵长类动物和其他动物之间大脑的关键差异一个多国研究小组现在已经更好了解物种之间大脑皮层神经元架构的差异,这要归功于高分辨率显微镜。波鸿鲁尔大学发育神经生物学研究小组的研究人员在PetraWahle教授的领导下,已经证明灵长类动物和非灵长类动物在其结构上一个重要差异:轴突的起源,这是负责传输被称为动作电位电信号的过程。这些结果最近发表在《eLife》杂志上。研究小组研究了各种动物,包括啮齿类动物(小鼠、大鼠)、有蹄类动物(猪)、食肉动物(猫、雪貂),以及动物学灵长类的猕猴和人类。科学家们通过使用五种不同的染色技术和对超过34,000个神经元的评估得出结论,非灵长类动物和灵长类动物之间存在着物种差异。与非灵长类动物的兴奋性锥体神经元相比,灵长类动物大脑皮层外层II和III的兴奋性锥体神经元上携带轴突的树突明显较少。此外,对于抑制性中间神经元,在猫和人类物种之间发现了携带轴突的树突细胞百分比方面的巨大差异。在比较具有初级感觉和高级大脑功能的猕猴皮层区域时,没有观察到定量差异。研究人员表示,高分辨率显微镜在研究中特别重要,这使得检测轴突起源可以在微米级准确跟踪,这在传统显微镜下有时并不那么容易。通常,一个神经元将到达树突的兴奋性输入与抑制性输入进行整合,这一过程被称为体突整合。然后,神经元决定输入是否足够强大和重要,以通过动作电位传送到其他神经元和脑区。携带轴突的树突被认为是有特权的,因为这些树突的去极化输入能够直接唤起动作电位,而无需参与体细胞整合和体细胞抑制。为什么会演变出这种物种差异,以及它对灵长类动物的新皮层信息处理可能具有的潜在优势,目前尚不清楚。PC版:https://www.cnbeta.com/articles/soft/1301255.htm手机版:https://m.cnbeta.com/view/1301255.htm

封面图片

小鼠帮助科学家揭示男性性欲背后的驱动因素

小鼠帮助科学家揭示男性性欲背后的驱动因素研究发现,当雄性小鼠遇到一只新的雌性小鼠时,大脑的一个区域就会被打开,从而激活下游的神经元,引发交配行为以及随之而来的快感和奖赏反应。他说:"人类的下丘脑中很可能也有类似的神经元组来调节性奖赏、行为和满足感。它们很可能与我们在小鼠身上观察到的神经元非常相似。"该研究小组早些时候的工作表明,操纵从纹状体末端床核(BNST)投射到前视下丘脑的神经元,可以开启或关闭性识别。沙赫说:"我们想知道,一旦发生识别,这些神经元中到底是哪些神经元在与视前下丘脑中的哪些神经元对话。"在最新的研究中,研究小组重点研究了一组能分泌一种名为"物质P"的慢效肽的BNST神经元。通过刺激这一神经束,回路到达了具有"物质P"受体的下丘脑前神经元,这些神经元随后启动了雄性交配行为。当科学家直接刺激视下丘脑前叶的P物质神经元时,刚刚完成交配行为的雄性小鼠被驱使立即恢复性活动。研究结果表明,正常的禁欲期(射精后性欲和交配能力恢复的时间)被完全覆盖。几乎所有的哺乳动物都需要这段时间来进行性活动的生理重组。它们只需要一秒钟或更短的时间就能恢复性活动。这相当于将禁欲期缩短了40多万倍。反过来说,抑制这种神经活动可以完全削弱男性的性欲。如果只让这组视网膜前-下丘脑神经元沉默,雄性就不会交配了。操纵P物质受体神经元甚至还可以引发雄性小鼠与无生命的物体交配(见下面的视频)。虽然这项研究的重点是操纵雄性小鼠的神经元,但科学家们相信,这种触发机制很可能在哺乳动物物种间是一致的。因此,这可能是开发治疗人类性行为新药的关键发现。治疗药物有可能降低性欲亢进男性的性活动,或增强性欲低下男性的性活动。"如果人类体内存在这些中枢--现在我们知道该去哪里找了--那么就有可能设计出用于调节这些回路的小分子药物,"沙赫说。"这类药物将与今天的磷酸二酯酶抑制剂截然不同,一般不会增强全身小血管的血流量,而是直接放大或抑制控制男性性欲的特定脑区。"研究人员还指出,增强小鼠的神经活动对攻击性没有影响,这对任何潜在的药物开发来说都是个好消息。研究小组现在的目标是找到驱动女性性欲的等效回路。在下面的视频中,刺激神经回路不仅会引发雌性小鼠的交配行为,还会导致雄性小鼠骑在无生命的物体上。这项研究发表在《细胞》杂志上。...PC版:https://www.cnbeta.com.tw/articles/soft/1381493.htm手机版:https://m.cnbeta.com.tw/view/1381493.htm

封面图片

科学家从章鱼视觉系统的地图中发现大脑进化的新线索

科学家从章鱼视觉系统的地图中发现大脑进化的新线索章鱼大脑的荧光图像显示不同的不同类型的神经元的位置信用:Niell实验室他们在一篇新的科学论文中列出了章鱼视觉系统的详细地图。在该地图中,他们对大脑中专门用于视觉的部分的不同类型的神经元进行了分类。这一结果对其他神经科学家来说是一个宝贵的资源,提供了可以指导未来实验的细节。此外,它还可以让我们更广泛地了解大脑和视觉系统的进化情况。该团队今天(10月31日)在《当代生物学》杂志上报告了他们的发现。CrisNiell在俄亥俄大学的实验室研究视觉,主要是在小鼠身上。但是几年前,博士后JuditPungor给实验室带来了一个新物种--加州双点章鱼。尽管传统上它并不被用作实验室的研究对象,但这种头足类动物很快就引起了俄亥俄大学神经科学家的兴趣。与小鼠不同,小鼠并不以拥有良好的视觉而闻名,"章鱼有一个惊人的视觉系统,它们的大脑中有很大一部分专门用于视觉处理,"Niell说。"它们的眼睛与人类的眼睛非常相似,但在那之后,大脑就完全不同了。"章鱼和人类的最后一个共同祖先是在5亿年前,此后,这些物种在非常不同的环境中进化。因此,科学家们不知道视觉系统的相似之处是否超出了眼睛的范围,或者章鱼是否反而使用了完全不同种类的神经元和大脑回路来实现类似的结果。"看到章鱼的眼睛如何与我们的眼睛相似地进化,思考章鱼的视觉系统如何能够成为更普遍地理解大脑复杂性的模型是一件很酷的事情,"Niell实验室的研究生和该论文的第一作者MeaSongco-Casey说。"例如,是否有基本的细胞类型是这种非常聪明、复杂的大脑所需要的?"在这里,研究小组使用遗传技术来确定章鱼视叶中不同类型的神经元,这是大脑中专门用于视觉的部分。他们挑选出六大类神经元,根据它们发出的化学信号进行区分。观察这些神经元中某些基因的活动,然后发现更多的亚型,为更具体的作用提供了线索。在某些情况下,科学家们精确地指出了特定的神经元群在独特的空间排列中--例如,在视叶周围的一圈神经元都使用一种叫做辛胺的分子发出信号。果蝇在活动时使用这种类似于肾上腺素的分子来增加视觉处理。因此,它也许在章鱼中也有类似的作用。"现在我们知道有这种非常特殊的细胞类型,我们可以开始进入并弄清楚它的作用,数据中大约有三分之一的神经元看起来还没有完全发育。章鱼的大脑在动物的生命周期中不断成长并增加新的神经元。这些不成熟的神经元,尚未整合到大脑电路中,是大脑处于扩张过程中的一个标志!"。然而,该地图并没有像研究人员所想的那样,显示出明显从人类或其他哺乳动物大脑转移过来的神经元组。这些神经元并没有相互映射--它们使用不同的神经递质。但是,也许它们正在进行相同种类的计算,只是方式不同。深入挖掘还需要更好地掌握头足类动物的遗传学。参与这项研究的安德鲁-克恩实验室的研究生加比-科芬(GabbyCoffing)说,由于章鱼在传统上没有被用作实验动物,许多用于果蝇或小鼠的精确遗传操作的工具还不存在于章鱼。有很多基因我们不知道它们的功能是什么,因为我们还没有对很多头足类动物的基因组进行排序。如果没有相关物种的基因数据作为比较点,就很难推断出特定神经元的功能。研究团队正在迎接这一挑战。他们现在正在努力绘制章鱼大脑视叶以外的地图,看看他们在这项研究中关注的一些基因如何在大脑的其他地方出现。他们还在记录视叶中的神经元,以确定它们如何处理视觉场景。随着时间的推移,他们的研究可能会使这些神秘的海洋动物不再那么神秘--同时也为我们自己的进化提供一点启示。...PC版:https://www.cnbeta.com.tw/articles/soft/1331421.htm手机版:https://m.cnbeta.com.tw/view/1331421.htm

封面图片

科学家发现成人大脑中生成新的神经元的原理

科学家发现成人大脑中生成新的神经元的原理齿状回(大脑颞叶海马结构的一部分)中新产生的神经元(红色)与细胞核(蓝色)和未成熟神经元的标记物(绿色)。资料来源:Knobloch实验室-UNIL成年大脑的一些区域含有静止的或休眠的神经干细胞,它们有可能被重新激活以形成新的神经元。然而,人们对从静止状态到增殖的过渡仍然知之甚少。由日内瓦大学(UNIGE)和洛桑大学(UNIL)的科学家领导的一个团队发现了细胞代谢在这一过程中的重要性,并确定了如何唤醒这些神经干细胞并重新激活它们。生物学家们成功地增加了成年甚至老年小鼠大脑中新神经元的数量。这些结果对治疗神经退行性疾病很有希望,将在《科学进展》杂志上发现。这种生物现象被称为成人神经生成,对学习和记忆过程等特定功能非常重要。然而,在成人大脑中,这些干细胞变得更加沉默或''休眠'',并降低了它们的更新和分化能力。因此,随着年龄的增长,神经发生明显减少。日内瓦大学理学院分子和细胞生物学系名誉教授让-克劳德-马蒂努(Jean-ClaudeMartinou)和生物和医学系生物医学科学副教授马伦-克诺布洛赫(MarlenKnobloch)的实验室发现了一种代谢机制,成年NSCs可以从其休眠状态出现并变得活跃。"我们发现线粒体--细胞内产生能量的细胞器--参与调节成年NSCs的激活水平,"UNIL的研究员FrancescoPetrelli和ValentinaScanDELLa,这项研究的共同第一作者表示。线粒体丙酮酸转运体(MPC)是Martinou教授小组11年前发现的一种蛋白质复合物,在这种调节中发挥着特殊作用。它的活性影响着细胞可以使用的代谢选择。通过了解区分活跃细胞和休眠细胞的代谢途径,科学家可以通过改变线粒体代谢来唤醒休眠细胞。现在,生物学家已经通过使用化学抑制剂或通过生成Mpc1基因的突变小鼠来阻断MPC的活性。利用这些药理学和遗传学方法,科学家们能够激活休眠的NSCs,从而在成年甚至老年小鼠的大脑中产生新的神经元。通过这项研究工作表明,代谢途径的重定向能够直接影响成年NSCs的活动状态,从而影响新神经元的生成数量,该研究的共同第一作者Knobloch教授总结说。"这些结果为细胞代谢在调节神经发生方面的作用提供了新的启示。从长远来看,这些结果可能会带来对抑郁症或神经退行性疾病等疾病的潜在治疗方案。"该研究的共同主要作者Jean-ClaudeMartinou总结道。...PC版:https://www.cnbeta.com.tw/articles/soft/1348035.htm手机版:https://m.cnbeta.com.tw/view/1348035.htm

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人